Jet transport coefficients by elastic and radiative scatterings in the strongly interacting quark-gluon plasma (2402.04923v2)
Abstract: We extend the investigation on jet transport coefficients within the effective Dynamical QuasiParticle Model (DQPM) -- constructed for the description of non-perturbative QCD phenomena of the strongly interacting quark-gluon plasma (sQGP) in line with the lattice QCD equation-of-state -- by accounting for inelastic $2\to 3$ reactions with gluon radiation additionally to the elastic scattering of partons. The elastic and inelastic reactions are calculated explicitly within leading-order Feynman diagrams with effective propagators and vertices from the DQPM by accounting for all channels and their interferences. We present the results for the jet transport coefficients such as the transverse momentum transfer squared $\hat{q}$ per unit length as well as the energy loss $\Delta E = dE/dx$ per unit length in the sQGP and investigate their dependence on the temperature $T$ and momentum of the jet parton depending on the choice of the strong coupling constant $\alpha_s$ in thermal, jet parton and radiative vertices. For the latter we consider different scenarios used in the literature and find a very strong dependence of $\hat q$ and $\Delta E$ on the choice of $\alpha_s$. Moreover, we explore the relation of $\hat{q}/T3$ to the ratio of specific shear viscosity to entropy density $\eta/s$ and show that the ratio $T3/\hat{q}$ to $\eta/s$ has a strong $T$ dependence -- especially when approaching to $T_c$ -- on the choice of $\alpha_s$ in scattering vertices.
- J. Adams et al. (STAR), Phys. Rev. Lett. 91, 072304 (2003), arXiv:nucl-ex/0306024 .
- C. Adler et al. (STAR), Phys. Rev. Lett. 90, 082302 (2003), arXiv:nucl-ex/0210033 .
- K. Aamodt et al. (ALICE), Phys. Lett. B 696, 30 (2011), arXiv:1012.1004 [nucl-ex] .
- G. Aad et al. (ATLAS), Phys. Rev. Lett. 105, 252303 (2010), arXiv:1011.6182 [hep-ex] .
- M. H. Thoma and M. Gyulassy, Nucl. Phys. B 351, 491 (1991).
- S. Mrowczynski, Phys. Lett. B 269, 383 (1991).
- M. Gyulassy and X.-N. Wang, Nucl. Phys. B 420, 583 (1994), arXiv:nucl-th/9306003 .
- B. G. Zakharov, JETP Lett. 63, 952 (1996), arXiv:hep-ph/9607440 .
- U. A. Wiedemann, Nucl. Phys. B 588, 303 (2000), arXiv:hep-ph/0005129 .
- X.-f. Guo and X.-N. Wang, Phys. Rev. Lett. 85, 3591 (2000), arXiv:hep-ph/0005044 .
- G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005), arXiv:hep-ph/0412346 .
- M. Djordjevic and U. W. Heinz, Phys. Rev. Lett. 101, 022302 (2008), arXiv:0802.1230 [nucl-th] .
- A. Majumder, Phys. Rev. D 85, 014023 (2012), arXiv:0912.2987 [nucl-th] .
- S. Caron-Huot and C. Gale, Phys. Rev. C 82, 064902 (2010), arXiv:1006.2379 [hep-ph] .
- J. a. Barata and Y. Mehtar-Tani, JHEP 10, 176 (2020), arXiv:2004.02323 [hep-ph] .
- S. Cao and X.-N. Wang, Rept. Prog. Phys. 84, 024301 (2021), arXiv:2002.04028 [hep-ph] .
- L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953).
- A. B. Migdal, Phys. Rev. 103, 1811 (1956).
- B. G. Zakharov, J. Phys. G 48, 055009 (2021), arXiv:2007.09772 [hep-ph] .
- P. B. Arnold, Phys. Rev. D 79, 065025 (2009), arXiv:0808.2767 [hep-ph] .
- N. Armesto et al., Phys. Rev. C 86, 064904 (2012), arXiv:1106.1106 [hep-ph] .
- J. Casalderrey-Solana and E. Iancu, JHEP 08, 015 (2011), arXiv:1105.1760 [hep-ph] .
- M. Djordjevic, Phys. Rev. C 74, 064907 (2006), arXiv:nucl-th/0603066 .
- K. M. Burke et al. (JET), Phys. Rev. C 90, 014909 (2014), arXiv:1312.5003 [nucl-th] .
- S. Cao et al. (JETSCAPE), Phys. Rev. C 104, 024905 (2021), arXiv:2102.11337 [nucl-th] .
- W. Cassing and E. L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009), arXiv:0907.5331 [nucl-th] .
- B. G. Zakharov, (2023), arXiv:2311.18607 [hep-ph] .
- B. Müller, Phys. Rev. D 104, L071501 (2021), arXiv:2107.14775 [hep-ph] .
- A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301 (2005), arXiv:hep-ph/0502138 .
- W. Cassing, Nucl. Phys. A 795, 70 (2007a), arXiv:0707.3033 [nucl-th] .
- W. Cassing, Nucl. Phys. A 791, 365 (2007b), arXiv:0704.1410 [nucl-th] .
- M. L. Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
- W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974).
- W. Cassing, Eur. Phys. J. ST 168, 3 (2009), arXiv:0808.0715 [nucl-th] .
- B. Svetitsky, Phys. Rev. D 37, 2484 (1988).
- B. G. Zakharov, JETP Lett. 112, 681 (2020), arXiv:2011.01526 [hep-ph] .
- M. Djordjevic and M. Djordjevic, Physics Letters B 734, 286 (2014).
- M. Djordjevic, Phys. Rev. C 80, 064909 (2009), arXiv:0903.4591 [nucl-th] .
- A. Kumar, A. Majumder, and J. H. Weber, “Jet transport coefficient q^^𝑞\hat{q}over^ start_ARG italic_q end_ARG in (2+1)-flavor lattice qcd,” (2020), arXiv:2010.14463 [hep-lat] .
- A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305 (2005), arXiv:hep-lat/0406009 .
- S. Sakai and A. Nakamura, PoS LATTICE2007, 221 (2007), arXiv:0710.3625 [hep-lat] .
- H. B. Meyer, Phys. Rev. D 76, 101701 (2007), arXiv:0704.1801 [hep-lat] .