Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Smooth Control via Nonsingular Fast Terminal Sliding Mode for Distributed Space Telescope Demonstration Mission by CubeSat Formation Flying (2402.04718v4)

Published 7 Feb 2024 in eess.SY and cs.SY

Abstract: This paper investigates the efficiency of nonsingular fast terminal sliding mode and adaptive smooth control method for the distributed space telescope demonstration mission. The distributed space telescope has a flexible focal length that corresponds to the relative position of the formation flying concept. The precise formation flying technology by CubeSats enhances the utility of distributed space systems with low costs. The propulsion systems for CubeSats usually have restricted degrees of freedom. Since the scientific mission requires continuous orbit control, the attitude and orbit control system mutually affect the control performance. The nonsingular fast terminal sliding mode has the advantage of a fast convergence rate and is able to improve the control performance. The adaptive smooth controller designed for the SISO system is expanded and applied to the attitude and orbit control system. The simulation results verify the efficiency of the adaptive smooth controller based on the nonsingular fast terminal sliding mode.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. M. D’Errico Distributed Space Missions for Earth System Monitoring Springer Science+Business Media New York, 2013
  2. Distributed Space Telescopes Enabled by Constellation of Small Satellites AGU Fall Meeting 2021, held in New Orleans, LA, 13-17 December 2021
  3. B. A. Corbin The Values Proposition of Distributed Satellite Systems for Space Science Missions Ph.D Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2015
  4. The gravity recovery and climate experiment: Mission overview and early results Geophysical Research Letters, vol.31, no.9, May 2004, doi: 10.1029/2004GL019920
  5. GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission Journal of Spacecraft and Rockets, vol.56, no.3, May 2019, doi: 10.2514/1.A34326
  6. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR interferometry Geosci. and remote Sens. Symp. 2, 2004, doi: 10.1109/IGARSS.2004.1368578
  7. N. H. Roth Navigation and Control Design for the CanX-4/-5 Satellite Formation Flying Mission M.S. Thesis, University of Toronto, Toronto, Canada, 2011
  8. CanX-4 and CanX-5 Precision Formation Flight: Mission Accomplished! 29th Annual AIAA/USU Conference on Small Satellites, pp.1–15, 2015
  9. Overview and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission Acta Astronaut., vol.153, pp.410–421, 2018 doi: 10.1016/j.actaastro.2018.03.033
  10. A. W. Koenig, B. Macintosh and S. D’Amico Formation Design of Distributed Telescopes in Earth Orbit for Astrophysics Applications Journal of Spacecraft and Rockets, vol.56, no.5, Sep-Oct. 2019, doi: 10.2514/1.A34420
  11. Spacecraft alignment determination and control for dual spacecraft precision formation flying Acta Astronaut., vol.153, pp.349–356, 2018 doi: 10.1016/j.actaastro.2018.02.021
  12. Air Force Research Inst. Technology Horizons: A Vision for Air Force Science and Technology 2010-30 AF/ST-TR-10-01-PR, Maxwell AFB, AL, Air Univ. Press, 2010.
  13. The Milli-Arc-Second Structure Imager, MASSIM: A new concept for a high angular resolution x-ray telescope Proc. SPIE 7011, 70110T-1-11, 2008, doi: 10.1117/12.789568
  14. The New Worlds Observer: scientific and technical advantages of external occulters Proc. of SPIE 7010, 70101Q-1-9, 2008 doi: 10.1117/12.789717
  15. ASPIICS: a giant coronagraph for the ESA/ PROBA-3 formation flying mission Proc. of SPIE 7731, 773118-1-12, 2010, doi: 10.1117/12.858247
  16. Very High-Resolution Solar X-Ray Imaging Using Diffractive Optics Sol. Phys., vol. 279, pp.573–588, 2012, doi: 10.1007/s11207-012-0016-7
  17. J.-J. E. Slotine, and W. Li Applied Nonlinear Control Pearson, 1991
  18. V.I. Utkin Sliding Modes in Control and Optimization Springer-Verlag Berlin, Heidelberg, 1992
  19. Sliding Mode Control and Observation Springer New York Heidelberg Dordrecht London, 2010
  20. Sliding Mode Control: Theory and Applications CRC Press, 1998
  21. Fault Tolerant Reconfigurable Satellite Formations Using Adaptive Variable Structure Techniques Journal of Guidance, Control, and Dynamics, vol. 33, no. 3, pp. 969–984, May-June 2010
  22. Continuous Traditional and High-Order Sliding Modes for Satellite Formation Control Journal of Guidance, Control, and Dynamics, vol.28, no.4, pp.826–831, 2005
  23. Multisatellite Formation Control for Remote Sensing Applications Using Artificial Potential Field and Adaptive Fuzzy Sliding Mode Control IEEE Systems Journal, vol. 9, no. 2, pp. 508–518, June 2015
  24. J. Zhou, Q. Hu and M. I. Friswell Decentralized Finite Time Attitude Synchronization Control of Satellite Formation Flying Journal of Guidance, Control, and Dynamics, vol.36, no.1 pp.185–195, 2013.
  25. Finite-time control for electromagnetic satellite formations Acta Astronautica, vol.74, pp.120–130, 2012.
  26. Sliding mode control of electromagnetic tethered satellite formation Advances in Space Research, vol. 58, pp. 619–634, 2016
  27. CubeSat Development for CANYVAL-X Mission 14th International Conferences on Space Operations, 2016, pp.681–691. doi: 10.5140/JASS.2019.36.4.235.
  28. Development of CubeSat systems in formation flying for the solar science demonstration: The CANYVAL-C mission Advances in Space Research, vol.68, no.11, pp. 4434-4455, 2021 doi: 10.1016/j.asr.2021.09.021.
  29. H. D. Black A passive system for determining the attitude of a satellite AIAA Journal, vol.2, no.7, pp.1350–1351, 1964
  30. J. R. Wertz Spacecraft Attitude Determination and Control
  31. B. Wie Space Vehicle Dynamics and Control, 2nd Ed. Reston, VA, USA: American Institute of Aeronautics and Astronautics, Inc., 2008.
  32. P. C. Hughes Space Attitude Dynamics John Wiley & Sons, 1986
  33. Spacecraft Formation Fling: Dynamics, control and navigation. Burlington, MA, USA: Elsevier, 2010.
  34. W. E. Wiesel Spacecraft Dynamics, 2nd Ed. McGraw-Hill, 1997
  35. P. M. Tiwari, S. Janardhanan and M. Nabi Rigid spacecraft atttitude control using adaptive integral second order sliding mode Aerospace Science and Technology, vol. 42, pp. 50–57, Jan. 2015, doi: 10.1016/j.ast.2014.11.017.
  36. P. M. Tiwari, S. Janardhanan and M. Nabi Rigid Spacecraft Atttitude Control Using Adaptive Non-singular Fast Terminal Sliding Mode J. Control Autom. Electr. Syst., vol. 26, pp. 115–124, 2015, doi: 10.1007/s40313-014-0164-0.
  37. H. Cho, G. Kerschen and T. R. Oliveira Adaptive smooth control for nonlinear uncertain systems Nonlinear Dyn., vol. 99, pp. 2819–2833, Jan. 2020, doi: 10.1007/s11071-019-05446-z.
  38. Continuous finite-time control for robotic manipulators with terminal sliding mode Automatica, vol. 41, no. 11, pp. 1957–1964, 2005, doi: 10.1016/j.automatica.2005.07.001.
  39. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying Acta Astronautica, vol. 74, pp. 76–87, Dec. 2011, doi: 10.1016/j.actaastro.2011.12.005.
  40. Z. Meng, W. Ren and Z. You Distributed finite-time attitude containment control for multiple rigid bodies Automatica, vol. 46, no. 12, pp. 2092–2099, Dec. 2010, doi: 10.1016/j.automatica.2010.09.005.
  41. S. P. Bhat and D. S. Bernstein Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators IEEE Transactions on Automatic Control, vol. 43 no. 5, pp. 678–682, May 1998, doi: 10.1109/9.668834.
  42. Y. Hong, J. Wang and D. Cheng Adaptive Finite-Time Control of Nonlinear Systems With Parametric Uncertainty IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 858–862, May 2006, doi: 10.1109/TAC.2006.875006.
  43. Y. Tang Terminal sliding mode control for rigid robots Automatica, vol. 34, no. 1, pp. 51–56, Jan. 1998, doi: 10.1016/S0005-1098(97)00174-X.
  44. Y.-J. Cheon Sliding Mode Control of Spacecraft with Actuator Dynamics Transactions on Control, Autonmation, and Systems Engineering, vol. 4, no. 2, Jun. 2022
  45. K. Ma Comments on: Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers IEEE Trans. Ind. Electron, vol. 60, no. 7, pp. 2771–2773, 2013
  46. S. Jeon, S.-Y. Park and G.-N. Kim Relative Orbit Control Algorithms and Scenarios for the Inertial Alignment Hold Demonstration Mission by CubeSat Formation Flying Aerospace, vol. 11, no.2, Feb. 2024, doi: 10.3390/aerospace11020135
  47. H. Kang Design and analysis of attitude system for CANYVAL-C cubesat mission M.S. Thesis, Yonsei university, South Korea, 2019

Summary

We haven't generated a summary for this paper yet.