Decoherence rate in random Lindblad dynamics (2402.04705v3)
Abstract: Open quantum systems undergo decoherence, which is responsible for the transition from quantum to classical behavior. The time scale in which decoherence takes place can be analyzed using upper limits to its rate. We examine the dynamics of open chaotic quantum systems governed by random Lindblad operators sourced from Gaussian and Ginibre ensembles with Wigner-Dyson symmetry classes. In these systems, the ensemble-averaged purity decays monotonically as a function of time. This decay is governed by the decoherence rate, which is upper-bounded by the dimension of their Hilbert space and is independent of the ensemble symmetry. These findings hold upon mixing different ensembles, indicating the universal character of the decoherence rate limit. Moreover, our findings reveal that open chaotic quantum systems governed by random Lindbladians tend to exhibit the most rapid decoherence, regardless of the initial state. This phenomenon is associated with the concentration of the decoherence rate near its upper bound. Our work identifies primary features of decoherence in dissipative quantum chaos, with applications ranging from quantum foundations to high-energy physics and quantum technologies.
- W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D 24, 1516 (1981).
- W. H. Zurek, Environment-induced superselection rules, Phys. Rev. D 26, 1862 (1982).
- M. Schlosshauer, Quantum decoherence, Physics Reports 831, 1 (2019).
- W. H. Zurek, Decoherence and the Transition from Quantum to Classical, Physics Today 44, 36 (1991).
- W. H. Zurek, S. Habib, and J. P. Paz, Coherent states via decoherence, Phys. Rev. Lett. 70, 1187 (1993).
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of n‐level systems, Journal of Mathematical Physics 17, 821 (1976).
- G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 119 (1976).
- D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).
- L. P. García-Pintos and A. del Campo, Limits to perception by quantum monitoring with finite efficiency, Entropy 23, 10.3390/e23111527 (2021).
- M. Kiciński and J. K. Korbicz, Decoherence and objectivity in higher spin environments, Phys. Rev. A 104, 042216 (2021).
- O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984).
- E. P. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Mathematical Proceedings of the Cambridge Philosophical Society 47, 790–798 (1951).
- E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Annals of Mathematics 62, 548 (1955).
- F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. I, Journal of Mathematical Physics 3, 140 (1962a).
- F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. II, Journal of Mathematical Physics 3, 157 (1962b).
- F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. III, Journal of Mathematical Physics 3, 166 (1962c).
- F. J. Dyson, The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics, Journal of Mathematical Physics 3, 1199 (1962d).
- A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).
- M. L. Mehta, Random Matrices, 3rd ed. (Elsevier, San Diego, 2004).
- F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2010).
- T. Can, Random lindblad dynamics, Journal of Physics A: Mathematical and Theoretical 52, 485302 (2019).
- L. Sá, P. Ribeiro, and T. Prosen, Spectral and steady-state properties of random liouvillians, Journal of Physics A: Mathematical and Theoretical 53, 305303 (2020).
- K. Wang, F. Piazza, and D. J. Luitz, Hierarchy of relaxation timescales in local random liouvillians, Phys. Rev. Lett. 124, 100604 (2020).
- L. Sá, P. Ribeiro, and T. Prosen, Complex spacing ratios: A signature of dissipative quantum chaos, Phys. Rev. X 10, 021019 (2020).
- A. del Campo and T. Takayanagi, Decoherence in conformal field theory, Journal of High Energy Physics 2020, 170 (2020).
- Y.-N. Zhou, L. Mao, and H. Zhai, Rényi entropy dynamics and lindblad spectrum for open quantum systems, Phys. Rev. Res. 3, 043060 (2021).
- L. Sá, P. Ribeiro, and T. Prosen, Symmetry classification of many-body lindbladians: Tenfold way and beyond, Phys. Rev. X 13, 031019 (2023).
- Y.-N. Zhou, T.-G. Zhou, and P. Zhang, Universal properties of the spectral form factor in open quantum systems, (2023), arXiv:2303.14352 [cond-mat.stat-mech] .
- M. Beau and A. del Campo, Nonlinear quantum metrology of many-body open systems, Phys. Rev. Lett. 119, 010403 (2017).
- T. Kanazawa, Unitary matrix integral for qcd with real quarks and the goe-gue crossover, Phys. Rev. D 102, 034036 (2020).
- T. Kanazawa, Unitary matrix integral for two-color qcd and the gse-gue crossover in random matrix theory, Physics Letters B 819, 136416 (2021).
- H.-P. Breuer and P. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
- A. Rivas and S. F. Huelga, Open Quantum Systems: An Introduction (Springer, 2012).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- R. Jozsa, Fidelity for mixed quantum states, Journal of Modern Optics 41, 2315 (1994).
- G. J. Milburn, Intrinsic decoherence in quantum mechanics, Phys. Rev. A 44, 5401 (1991).
- I. L. Egusquiza, L. J. Garay, and J. M. Raya, Quantum evolution according to real clocks, Phys. Rev. A 59, 3236 (1999).
- I. L. Egusquiza and L. J. Garay, Real clocks and the zeno effect, Phys. Rev. A 68, 022104 (2003).
- D. Lidar, A. Shabani, and R. Alicki, Conditions for strictly purity-decreasing quantum markovian dynamics, Chemical Physics 322, 82 (2006), real-time dynamics in complex quantum systems.
- R. Horn and C. Johnson, Matrix Analysis (Cambridge University Press, 1985).
- A. del Campo and T. Takayanagi, Decoherence in Conformal Field Theory, J. High Energy Phys. 2020 (170), 170.
- B. Collins and P. Śniady, Integration with respect to the haar measure on unitary, orthogonal and symplectic group, Communications in Mathematical Physics 264, 773 (2006).
- B. Collins and S. Matsumoto, On some properties of orthogonal weingarten functions, Journal of Mathematical Physics 50, 113516 (2009).
- G. Akemann, J. Baik, and P. Di Francesco, The Oxford handbook of random matrix theory (Oxford University Press, 2011).
- M. Gessner and H.-P. Breuer, Generic features of the dynamics of complex open quantum systems: Statistical approach based on averages over the unitary group, Phys. Rev. E 87, 042128 (2013).