Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

At most one solution to $a^x + b^y = c^z$ for some ranges of $a$, $b$, $c$ (2402.04428v1)

Published 6 Feb 2024 in math.NT

Abstract: We consider the number of solutions in positive integers $(x,y,z)$ for the purely exponential Diophantine equation $ax+by =cz$ (with $\gcd(a,b)=1$). Apart from a list of known exceptions, a conjecture published in 2016 claims that this equation has at most one solution in positive integers $x$, $y$, and $z$. We show that this is true for some ranges of $a$, $b$, $c$, for instance, when $1 < a,b < 3600$ and $c<10{10}$. The conjecture also holds for small pairs $(a,b)$ independent of $c$, where $2 \le a,b \le 10$ with $\gcd(a,b)=1$. We show that the Pillai equation $ax - by = r > 0$ has at most one solution (with a known list of exceptions) when $2 \le a,b \le 3600$. Finally, the primitive case of the Je\'smanowicz conjecture holds when $a \le 106$ or when $b \le 106$. This work highlights the power of some ideas of Miyazaki and Pink and the usefulness of a theorem by Scott.

Citations (1)

Summary

We haven't generated a summary for this paper yet.