Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic identifiability of partial differential equation models (2402.04241v1)

Published 6 Feb 2024 in q-bio.QM, cs.SC, cs.SY, eess.SY, and math.AP

Abstract: Differential equation models are crucial to scientific processes. The values of model parameters are important for analyzing the behaviour of solutions. A parameter is called globally identifiable if its value can be uniquely determined from the input and output functions. To determine if a parameter estimation problem is well-posed for a given model, one must check if the model parameters are globally identifiable. This problem has been intensively studied for ordinary differential equation models, with theory and several efficient algorithms and software packages developed. A comprehensive theory of algebraic identifiability for PDEs has hitherto not been developed due to the complexity of initial and boundary conditions. Here, we provide theory and algorithms, based on differential algebra, for testing identifiability of polynomial PDE models. We showcase this approach on PDE models arising in the sciences.

Summary

We haven't generated a summary for this paper yet.