2000 character limit reached
Angular correlation and deformed Hellings-Downs curve by spin-2 ultralight dark matter (2402.03984v1)
Published 6 Feb 2024 in gr-qc, astro-ph.CO, hep-ph, and hep-th
Abstract: The pulsar timings are sensitive to both the nanohertz gravitational-wave background and the oscillation of ultralight dark matter. The Hellings-Downs angular correlation curve provides a criterion to search for stochastic gravitational-wave backgrounds at nanohertz via pulsar timing arrays. We study the angular correlation of the timing residuals induced by the spin-2 ultralight dark matter, which is different from the usual Hellings-Downs correlation. At a typical frequency, we show that the spin-2 ultralight dark matter can give rise to the deformation of the Hellings-Downs correlation curve induced by the stochastic gravitational wave background.
- W. H. Ruan, Z. K. Guo, R. G. Cai and Y. Z. Zhang, “Taiji program: Gravitational-wave sources,” Int. J. Mod. Phys. A 35, no.17, 2050075 (2020) doi:10.1142/S0217751X2050075X [arXiv:1807.09495 [gr-qc]].
- Z. Zhang, C. Cai, Y. H. Su, S. Wang, Z. H. Yu and H. H. Zhang, “Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations,” [arXiv:2307.11495 [hep-ph]].
- S. Balaji, G. Domènech and G. Franciolini, “Scalar-induced gravitational wave interpretation of PTA data: the role of scalar fluctuation propagation speed,” JCAP 10, 041 (2023) doi:10.1088/1475-7516/2023/10/041 [arXiv:2307.08552 [gr-qc]].
- R. w. Hellings and G. s. Downs, “UPPER LIMITS ON THE ISOTROPIC GRAVITATIONAL RADIATION BACKGROUND FROM PULSAR TIMING ANALYSIS,” Astrophys. J. Lett. 265, L39-L42 (1983) doi:10.1086/183954
- A. Khmelnitsky and V. Rubakov, “Pulsar timing signal from ultralight scalar dark matter,” JCAP 02, 019 (2014) doi:10.1088/1475-7516/2014/02/019 [arXiv:1309.5888 [astro-ph.CO]].
- K. Nomura, A. Ito and J. Soda, “Pulsar timing residual induced by ultralight vector dark matter,” Eur. Phys. J. C 80, no.5, 419 (2020) doi:10.1140/epjc/s10052-020-7990-y [arXiv:1912.10210 [gr-qc]].
- J. M. Armaleo, D. López Nacir and F. R. Urban, “Pulsar timing array constraints on spin-2 ULDM,” JCAP 09, 031 (2020) doi:10.1088/1475-7516/2020/09/031 [arXiv:2005.03731 [astro-ph.CO]].
- S. Sun, X. Y. Yang and Y. L. Zhang, “Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2,” Phys. Rev. D 106, no.6, 066006 (2022) doi:10.1103/PhysRevD.106.066006 [arXiv:2112.15593 [astro-ph.CO]].
- C. Unal, F. R. Urban and E. D. Kovetz, “Probing ultralight scalar, vector and tensor dark matter with pulsar timing arrays,” [arXiv:2209.02741 [astro-ph.CO]].
- Y. M. Wu, Z. C. Chen and Q. G. Huang, “Pulsar timing residual induced by ultralight tensor dark matter,” JCAP 09, 021 (2023) doi:10.1088/1475-7516/2023/09/021 [arXiv:2305.08091 [hep-ph]].
- H. Omiya, K. Nomura and J. Soda, “Hellings-Downs curve deformed by ultralight vector dark matter,” Phys. Rev. D 108, no.10, 104006 (2023) doi:10.1103/PhysRevD.108.104006 [arXiv:2307.12624 [astro-ph.CO]].
- E. G. M. Ferreira, “Ultra-light dark matter,” Astron. Astrophys. Rev. 29, no.1, 7 (2021) doi:10.1007/s00159-021-00135-6 [arXiv:2005.03254 [astro-ph.CO]].
- K. Aoki and S. Mukohyama, “Massive gravitons as dark matter and gravitational waves,” Phys. Rev. D 94, no.2, 024001 (2016) doi:10.1103/PhysRevD.94.024001 [arXiv:1604.06704 [hep-th]].
- E. Babichev, L. Marzola, M. Raidal, A. Schmidt-May, F. Urban, H. Veermäe and M. von Strauss, “Bigravitational origin of dark matter,” Phys. Rev. D 94, no.8, 084055 (2016) doi:10.1103/PhysRevD.94.084055 [arXiv:1604.08564 [hep-ph]].
- E. Babichev, L. Marzola, M. Raidal, A. Schmidt-May, F. Urban, H. Veermäe and M. von Strauss, “Heavy spin-2 ultralight dark matter,” JCAP 09, 016 (2016) doi:10.1088/1475-7516/2016/09/016 [arXiv:1607.03497 [hep-th]].
- K. Aoki and K. i. Maeda, “Condensate of Massive Graviton and Dark Matter,” Phys. Rev. D 97, no.4, 044002 (2018) doi:10.1103/PhysRevD.97.044002 [arXiv:1707.05003 [hep-th]].
- L. Marzola, M. Raidal and F. R. Urban, “Oscillating spin-2 ultralight dark matter,” Phys. Rev. D 97, no.2, 024010 (2018) doi:10.1103/PhysRevD.97.024010 [arXiv:1708.04253 [hep-ph]].
- Y. Manita, K. Aoki, T. Fujita and S. Mukohyama, “spin-2 ultralight dark matter from an anisotropic universe in bigravity,” Phys. Rev. D 107, no.10, 104007 (2023) doi:10.1103/PhysRevD.107.104007 [arXiv:2211.15873 [gr-qc]].
- E. W. Kolb, S. Ling, A. J. Long and R. A. Rosen, “Cosmological gravitational particle production of massive spin-2 particles,” JHEP 05, 181 (2023) doi:10.1007/JHEP05(2023)181 [arXiv:2302.04390 [astro-ph.CO]].
- M. A. Gorji, “spin-2 ultralight dark matter from inflation,” [arXiv:2305.13381 [astro-ph.CO]].
- S. F. Hassan and R. A. Rosen, “Bimetric Gravity from Ghost-free Massive Gravity,” JHEP 02, 126 (2012) doi:10.1007/JHEP02(2012)126 [arXiv:1109.3515 [hep-th]].
- R. Z. Guo, Y. Jiang and Q. G. Huang, “Probing Ultralight Tensor Dark Matter with the Stochastic Gravitational-Wave Background from Advanced LIGO and Virgo’s First Three Observing Runs,” [arXiv:2312.16435 [astro-ph.CO]].
- A. Schmidt-May and M. von Strauss, “Recent developments in bimetric theory,” J. Phys. A 49, no.18, 183001 (2016) doi:10.1088/1751-8113/49/18/183001 [arXiv:1512.00021 [hep-th]].
- J. M. Armaleo, D. López Nacir and F. R. Urban, “Binary pulsars as probes for spin-2 ultralight dark matter,” JCAP 01, 053 (2020) doi:10.1088/1475-7516/2020/01/053 [arXiv:1909.13814 [astro-ph.HE]].
- J. M. Armaleo, D. López Nacir and F. R. Urban, “Searching for spin-2 ULDM with gravitational waves interferometers,” JCAP 04, 053 (2021) doi:10.1088/1475-7516/2021/04/053 [arXiv:2012.13997 [astro-ph.CO]].