Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for Collision-free Flight Exploiting Deep Collision Encoding (2402.03947v1)

Published 6 Feb 2024 in cs.RO

Abstract: This work contributes a novel deep navigation policy that enables collision-free flight of aerial robots based on a modular approach exploiting deep collision encoding and reinforcement learning. The proposed solution builds upon a deep collision encoder that is trained on both simulated and real depth images using supervised learning such that it compresses the high-dimensional depth data to a low-dimensional latent space encoding collision information while accounting for the robot size. This compressed encoding is combined with an estimate of the robot's odometry and the desired target location to train a deep reinforcement learning navigation policy that offers low-latency computation and robust sim2real performance. A set of simulation and experimental studies in diverse environments are conducted and demonstrate the efficiency of the emerged behavior and its resilience in real-life deployments.

Citations (6)

Summary

We haven't generated a summary for this paper yet.