Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning from Bagged Reward (2402.03771v3)

Published 6 Feb 2024 in cs.LG

Abstract: In Reinforcement Learning (RL), it is commonly assumed that an immediate reward signal is generated for each action taken by the agent, helping the agent maximize cumulative rewards to obtain the optimal policy. However, in many real-world scenarios, designing immediate reward signals is difficult; instead, agents receive a single reward that is contingent upon a partial sequence or a complete trajectory. In this work, we define this challenging problem as RL from Bagged Reward (RLBR), where sequences of data are treated as bags with non-Markovian bagged rewards, leading to the formulation of Bagged Reward Markov Decision Processes (BRMDPs). Theoretically, we demonstrate that RLBR can be addressed by solving a standard MDP with properly redistributed bagged rewards allocated to each instance within a bag. Empirically, we find that reward redistribution becomes more challenging as the bag length increases, due to reduced informational granularity. Existing reward redistribution methods are insufficient to address these challenges. Therefore, we propose a novel reward redistribution method equipped with a bidirectional attention mechanism, enabling the accurate interpretation of contextual nuances and temporal dependencies within each bag. We experimentally demonstrate that our proposed method consistently outperforms existing approaches.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets