Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable BDF time discretization of BGN-based parametric finite element methods for geometric flows (2402.03641v2)

Published 6 Feb 2024 in math.NA and cs.NA

Abstract: We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formulae (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and N\"urnberg (J. Comput. Phys., 222 (2007), pp.~441--467), we successfully develop high-order BGN/BDF$k$ schemes. The proposed BGN/BDF$k$ schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired $k$th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF$k$ schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.

Citations (3)

Summary

We haven't generated a summary for this paper yet.