Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stable BDF time discretization of BGN-based parametric finite element methods for geometric flows

Published 6 Feb 2024 in math.NA and cs.NA | (2402.03641v2)

Abstract: We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formulae (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and N\"urnberg (J. Comput. Phys., 222 (2007), pp.~441--467), we successfully develop high-order BGN/BDF$k$ schemes. The proposed BGN/BDF$k$ schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired $k$th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF$k$ schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.