Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cosmography with next-generation gravitational wave detectors (2402.03120v2)

Published 5 Feb 2024 in gr-qc, astro-ph.CO, astro-ph.HE, and hep-ph

Abstract: Advancements in cosmology through next-generation ground-based gravitational wave observatories will bring in a paradigm shift. We explore the pivotal role that gravitational-wave standard sirens will play in inferring cosmological parameters with next-generation observatories, not only achieving exquisite precision but also opening up unprecedented redshifts. We examine the merits and the systematic biases involved in gravitational-wave standard sirens utilizing binary black holes, binary neutron stars, and neutron star-black hole mergers. Further, we estimate the precision of bright sirens, golden dark sirens, and spectral sirens for these binary coalescences and compare the abilities of various next-generation observatories (Asharp, Cosmic Explorer, Einstein Telescope, and their possible networks). When combining different sirens, we find sub-percent precision over more than 10 billion years of cosmic evolution for the Hubble expansion rate $H(z)$. This work presents a broad view of opportunities to precisely measure the cosmic expansion rate, decipher the elusive dark energy and dark matter, and potentially discover new physics in the uncharted Universe with next-generation gravitational-wave detectors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (152)
  1. Maggiore M et al. 2020 JCAP 03 050 (Preprint 1912.02622)
  2. Evans M et al. 2021 (Preprint 2109.09882)
  3. Auclair P et al. (LISA Cosmology Working Group) 2023 Living Rev. Rel. 26 5 (Preprint 2204.05434)
  4. Ackley K et al. 2020 Publ. Astron. Soc. Austral. 37 e047 (Preprint 2007.03128)
  5. Luo J et al. (TianQin) 2016 Class. Quant. Grav. 33 035010 (Preprint 1512.02076)
  6. Kawamura S et al. 2021 PTEP 2021 05A105 (Preprint 2006.13545)
  7. Gupta I et al. 2023 Characterizing Gravitational Wave Detector Networks: From A♯♯{}^{\sharp}start_FLOATSUPERSCRIPT ♯ end_FLOATSUPERSCRIPT to Cosmic Explorer (Preprint 2307.10421)
  8. Abdalla E et al. 2022 JHEAp 34 49–211 (Preprint 2203.06142)
  9. Riess A G et al. (Supernova Search Team) 1998 Astron. J. 116 1009–1038 (Preprint astro-ph/9805201)
  10. Perlmutter S et al. (Supernova Cosmology Project) 1999 Astrophys. J. 517 565–586 (Preprint astro-ph/9812133)
  11. Schutz B F 1986 Nature 323 310–311
  12. Holz D E and Hughes S A 2005 Astrophys. J. 629 15–22 (Preprint astro-ph/0504616)
  13. Mukherjee S, Wandelt B D and Silk J 2020 Phys. Rev. D 101 103509 (Preprint 1908.08950)
  14. Xu F, Ezquiaga J M and Holz D E 2022 Astrophys. J. 929 9 (Preprint 2105.14390)
  15. Tiwari V 2018 Class. Quant. Grav. 35 145009 (Preprint 1712.00482)
  16. Chen H Y and Holz D E 2017 Astrophysical Journal 840 88 (Preprint 1509.00055)
  17. Singer L P and Price L R 2016 Phys. Rev. D 93 024013 (Preprint 1508.03634)
  18. Abbott B P et al. (LIGO Scientific, Virgo) 2017 Phys. Rev. Lett. 119 161101 (Preprint 1710.05832)
  19. Pan Z, Yang H and Yagi K 2022 (Preprint 2208.08808)
  20. Levin J, D’Orazio D J and Garcia-Saenz S 2018 Phys. Rev. D 98 123002 (Preprint 1808.07887)
  21. Dai Z G 2019 Astrophysical Journal Letters 873 L13 (Preprint 1902.07939)
  22. Pan Z and Yang H 2019 Phys. Rev. D 100 043025 (Preprint 1905.04775)
  23. Zhong S Q, Dai Z G and Deng C M 2019 Astrophysical Journal Letters 883 L19 (Preprint 1909.00494)
  24. Pan Z, Yang H and Yagi K 2022 arXiv e-prints arXiv:2208.08808 (Preprint 2208.08808)
  25. Most E R and Philippov A A 2022 arXiv e-prints arXiv:2207.14435 (Preprint 2207.14435)
  26. Totani T 2013 PASJ 65 L12 (Preprint 1307.4985)
  27. Yamasaki S, Totani T and Kiuchi K 2018 PASJ 70 39 (Preprint 1710.02302)
  28. Liebling S L and Palenzuela C 2016 Phys. Rev. D 94 064046 (Preprint 1607.02140)
  29. Loeb A 2016 Astrophysical Journal Letters 819 L21 (Preprint 1602.04735)
  30. Perna R, Lazzati D and Giacomazzo B 2016 Astrophysical Journal Letters 821 L18 (Preprint 1602.05140)
  31. Zhang B 2016 Astrophysical Journal Letters 827 L31 (Preprint 1602.04542)
  32. Dokuchaev V I and Eroshenko Y N 2017 arXiv e-prints arXiv:1701.02492 (Preprint 1701.02492)
  33. Levan A et al. (JWST) 2023 (Preprint 2307.02098)
  34. Chen H Y, Fishbach M and Holz D E 2018 Nature 562 545–547 (Preprint 1712.06531)
  35. Seto N and Kyutoku K 2018 Monthly Notices of the Royal Astronomical Society 475 4133–4139 (Preprint 1710.06424)
  36. Chen H Y 2020 Phys. Rev. Lett. 125 201301 (Preprint 2006.02779)
  37. Gagnon-Hartman S, Ruan J and Haggard D 2023 Monthly Notices of the Royal Astronomical Society 520 1–13 (Preprint 2301.05241)
  38. Chen H Y, Talbot C and Chase E A 2023 arXiv e-prints arXiv:2307.10402 (Preprint 2307.10402)
  39. Howlett C and Davis T M 2020 Monthly Notices of the Royal Astronomical Society 492 3803–3815 (Preprint 1909.00587)
  40. Abbott B P et al. (LIGO Scientific, Virgo) 2020 Class. Quant. Grav. 37 055002 (Preprint 1908.11170)
  41. Davis D et al. (LIGO) 2021 Class. Quant. Grav. 38 135014 (Preprint 2101.11673)
  42. Edy O, Lundgren A and Nuttall L K 2021 Phys. Rev. D 103 124061 (Preprint 2101.07743)
  43. Kumar S, Nitz A H and Jiménez Forteza X 2022 arXiv e-prints arXiv:2202.12762 (Preprint 2202.12762)
  44. Oguri M 2016 Phys. Rev. D 93 083511 (Preprint 1603.02356)
  45. Aghamousa A et al. (DESI) 2016 (Preprint 1611.00036)
  46. Doré O et al. (SPHEREx) 2014 Cosmology with the SPHEREX All-Sky Spectral Survey (Preprint 1412.4872)
  47. Diaz C C and Mukherjee S 2022 Mon. Not. Roy. Astron. Soc. 511 2782–2795 (Preprint 2107.12787)
  48. Del Pozzo W 2012 Phys. Rev. D 86 043011 (Preprint 1108.1317)
  49. Gair J R et al. 2023 Astron. J. 166 22 (Preprint 2212.08694)
  50. Abbott B P et al. (LIGO Scientific, Virgo) 2017 Phys. Rev. Lett. 119 141101 (Preprint 1709.09660)
  51. Abbott T M C et al. (DES, NOAO Data Lab) 2018 Astrophys. J. Suppl. 239 18 (Preprint 1801.03181)
  52. Fishbach M et al. (LIGO Scientific, Virgo) 2019 Astrophys. J. Lett. 871 L13 (Preprint 1807.05667)
  53. Chen H Y and Holz D E 2016 Finding the One: Identifying the Host Galaxies of Gravitational-Wave Sources (Preprint 1612.01471)
  54. Nishizawa A 2017 Phys. Rev. D96 101303 (Preprint 1612.06060)
  55. Gupta I 2023 Mon. Not. Roy. Astron. Soc. 524 3537–3558 (Preprint 2212.00163)
  56. Roy S, Sengupta A S and Arun K G 2021 Phys. Rev. D 103 064012 (Preprint 1910.04565)
  57. Van Den Broeck C and Sengupta A S 2007 Class. Quant. Grav. 24 1089–1114 (Preprint gr-qc/0610126)
  58. Ajith P and Bose S 2009 Phys. Rev. D 79 084032 (Preprint 0901.4936)
  59. Graff P B, Buonanno A and Sathyaprakash B S 2015 Phys. Rev. D 92 022002 (Preprint 1504.04766)
  60. Kyutoku K, Shibata M and Taniguchi K 2021 Living Rev. Rel. 24 5 (Preprint 2110.06218)
  61. Gray R et al. 2020 Phys. Rev. D 101 122001 (Preprint 1908.06050)
  62. Sun L et al. 2020 Class. Quant. Grav. 37 225008 (Preprint 2005.02531)
  63. Chernoff D F and Finn L S 1993 Astrophys. J. Lett. 411 L5–L8 (Preprint gr-qc/9304020)
  64. Taylor S R, Gair J R and Mandel I 2012 Phys. Rev. D 85 023535 (Preprint 1108.5161)
  65. Fishbach M and Holz D E 2017 Astrophys. J. Lett. 851 L25 (Preprint 1709.08584)
  66. 2021 (Preprint 2111.03634)
  67. Barkat Z, Rakavy G and Sack N 1967 Phys. Rev. Lett. 18 379–381
  68. Fowler W A and Hoyle F 1964 Astrophys. J. Suppl. 9 201–319
  69. Heger A and Woosley S E 2002 Astrophys. J. 567 532–543 (Preprint astro-ph/0107037)
  70. Fryer C L, Woosley S E and Heger A 2001 The Astrophysical Journal 550 372–382 URL https://doi.org/10.1086%2F319719
  71. Talbot C and Thrane E 2018 Astrophys. J. 856 173 (Preprint 1801.02699)
  72. Golomb J, Isi M and Farr W 2023 (Preprint 2312.03973)
  73. Ezquiaga J M and Holz D E 2022 Phys. Rev. Lett. 129 061102 (Preprint 2202.08240)
  74. Mukherjee S 2021 (Preprint 2112.10256)
  75. Ezquiaga J M and Holz D E 2021 Astrophys. J. Lett. 909 L23 (Preprint 2006.02211)
  76. Vines J, Flanagan E E and Hinderer T 2011 Phys. Rev. D 83 084051 (Preprint 1101.1673)
  77. Nagar A et al. 2018 Phys. Rev. D 98 104052 (Preprint 1806.01772)
  78. Marsat S 2015 Class. Quant. Grav. 32 085008 (Preprint 1411.4118)
  79. Messenger C and Read J 2012 Phys. Rev. Lett. 108 091101 (Preprint 1107.5725)
  80. Hinderer T 2008 Astrophys. J. 677 1216–1220 [Erratum: Astrophys.J. 697, 964 (2009)] (Preprint 0711.2420)
  81. Smith R et al. 2021 Phys. Rev. Lett. 127 081102 (Preprint 2103.12274)
  82. Yagi K and Yunes N 2016 Class. Quant. Grav. 33 13LT01 (Preprint 1512.02639)
  83. Kashyap R, Dhani A and Sathyaprakash B 2022 Phys. Rev. D 106 123001 (Preprint 2209.02757)
  84. Finstad D, White L V and Brown D A 2023 Astrophys. J. 955 45 (Preprint 2211.01396)
  85. Ghosh T, Biswas B and Bose S 2022 Phys. Rev. D 106 123529 (Preprint 2203.11756)
  86. Chatziioannou K, Haster C J and Zimmerman A 2018 Phys. Rev. D 97 104036 (Preprint 1804.03221)
  87. Kumar B and Landry P 2019 Phys. Rev. D 99 123026 (Preprint 1902.04557)
  88. Abbott B P et al. (LIGO Scientific, Virgo) 2017 Astrophys. J. Lett. 850 L39 (Preprint 1710.05836)
  89. Abbott B P et al. (LIGO Scientific, Virgo) 2018 Phys. Rev. Lett. 121 161101 (Preprint 1805.11581)
  90. Abbott B P et al. (LIGO Scientific, Virgo) 2019 Phys. Rev. X 9 011001 (Preprint 1805.11579)
  91. Abbott B P et al. (LIGO Scientific, Virgo) 2020 Class. Quant. Grav. 37 045006 (Preprint 1908.01012)
  92. Borhanian S and Sathyaprakash B S 2022 Listening to the Universe with Next Generation Ground-Based Gravitational-Wave Detectors (Preprint 2202.11048)
  93. Abbott B P et al. (LIGO Scientific) 2017 Class. Quant. Grav. 34 044001 (Preprint 1607.08697)
  94. Reitze D et al. 2019 Bull. Am. Astron. Soc. 51 035 (Preprint 1907.04833)
  95. Evans M et al. 2023 Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee (Preprint 2306.13745)
  96. Punturo M et al. 2010 Class. Quant. Grav. 27 194002
  97. Hild S et al. 2011 Class. Quant. Grav. 28 094013 (Preprint 1012.0908)
  98. Branchesi M et al. 2023 JCAP 07 068 (Preprint 2303.15923)
  99. Mancarella M, Iacovelli F and Gerosa D 2023 Phys. Rev. D 107 L101302 (Preprint 2303.16323)
  100. Babak S, Petiteau A and Hewitson M 2021 (Preprint 2108.01167)
  101. Tang Y, Haiman Z and Macfadyen A 2018 Mon. Not. Roy. Astron. Soc. 476 2249–2257 (Preprint 1801.02266)
  102. Del Pozzo W, Sesana A and Klein A 2018 Mon. Not. Roy. Astron. Soc. 475 3485–3492 (Preprint 1703.01300)
  103. Congedo G and Taylor A 2019 Phys. Rev. D 99 083526 (Preprint 1812.02730)
  104. Belgacem E et al. (LISA Cosmology Working Group) 2019 JCAP 07 024 (Preprint 1906.01593)
  105. Sesana A 2016 Phys. Rev. Lett. 116 231102 (Preprint 1602.06951)
  106. Moore C J, Gerosa D and Klein A 2019 Mon. Not. Roy. Astron. Soc. 488 L94–L98 (Preprint 1905.11998)
  107. Palmese A et al. (DES) 2020 Astrophys. J. Lett. 900 L33 (Preprint 2006.14961)
  108. Amendola L et al. 2018 Living Rev. Rel. 21 2 (Preprint 1606.00180)
  109. Caputo R et al. 2022 J. Astron. Telesc. Instrum. Syst. 8 044003 (Preprint 2208.04990)
  110. Ray P S et al. (STROBE-X Science Working Group) 2019 (Preprint 1903.03035)
  111. Abell P A et al. (LSST Science, LSST Project) 2009 (Preprint 0912.0201)
  112. Spergel D et al. 2015 (Preprint 1503.03757)
  113. Bennett C L et al. (WMAP) 2003 Astrophys. J. Suppl. 148 1–27 (Preprint astro-ph/0302207)
  114. Aghanim N et al. (Planck) 2020 Astron. Astrophys. 641 A6 [Erratum: Astron.Astrophys. 652, C4 (2021)] (Preprint 1807.06209)
  115. Moresco M et al. 2022 Living Rev. Rel. 25 6 (Preprint 2201.07241)
  116. Freedman W L 2017 Nature Astron. 1 0121 (Preprint 1706.02739)
  117. Verde L, Treu T and Riess A G 2019 Nature Astron. 3 891 (Preprint 1907.10625)
  118. Abbott T M C et al. (DES) 2022 Phys. Rev. D 105 023520 (Preprint 2105.13549)
  119. Eisenstein D J et al. (SDSS) 2005 Astrophys. J. 633 560–574 (Preprint astro-ph/0501171)
  120. Ivezić v et al. (LSST) 2019 Astrophys. J. 873 111 (Preprint 0805.2366)
  121. Abbott T M C et al. (DES) 2024 (Preprint 2401.02929)
  122. Weltman A et al. 2020 Publ. Astron. Soc. Austral. 37 e002 (Preprint 1810.02680)
  123. Schechter P 1976 Astrophysical Journal 203 297–306
  124. Singer L P et al. 2016 Astrophys. J. Lett. 829 L15 (Preprint 1603.07333)
  125. Borhanian S 2021 Class. Quant. Grav. 38 175014 (Preprint 2010.15202)
  126. Cutler C and Flanagan E E 1994 Phys. Rev. D 49 2658–2697 (Preprint gr-qc/9402014)
  127. Villar V A et al. 2017 Astrophys. J. Lett. 851 L21 (Preprint 1710.11576)
  128. Kashyap R, Raman G and Ajith P 2019 Astrophys. J. Lett. 886 L19 (Preprint 1908.02168)
  129. de Souza J M S, Sturani R and Alcaniz J 2022 JCAP 03 025 (Preprint 2110.13316)
  130. Phan D, Pradhan N and Jankowiak M 2019 arXiv preprint arXiv:1912.11554
  131. Gray R et al. 2023 JCAP 12 023 (Preprint 2308.02281)
  132. Sathyaprakash B S, Schutz B F and Van Den Broeck C 2010 Class. Quant. Grav. 27 215006 (Preprint 0906.4151)
  133. Taylor S R and Gair J R 2012 Phys. Rev. D 86 023502 (Preprint 1204.6739)
  134. Ezquiaga J M and Zumalacárregui M 2018 Front. Astron. Space Sci. 5 44 (Preprint 1807.09241)
  135. Lombriser L and Taylor A 2016 JCAP 03 031 (Preprint 1509.08458)
  136. Ezquiaga J M and Zumalacárregui M 2017 Phys. Rev. Lett. 119 251304 (Preprint 1710.05901)
  137. Creminelli P and Vernizzi F 2017 Phys. Rev. Lett. 119 251302 (Preprint 1710.05877)
  138. Sakstein J and Jain B 2017 Phys. Rev. Lett. 119 251303 (Preprint 1710.05893)
  139. Ezquiaga J M 2021 Phys. Lett. B 822 136665 (Preprint 2104.05139)
  140. Mastrogiovanni S, Steer D and Barsuglia M 2020 Phys. Rev. D 102 044009 (Preprint 2004.01632)
  141. Chen A, Gray R and Baker T 2023 (Preprint 2309.03833)
  142. Mancarella M, Genoud-Prachex E and Maggiore M 2022 Phys. Rev. D 105 064030 (Preprint 2112.05728)
  143. Magana Hernandez I 2023 Phys. Rev. D 107 084033 (Preprint 2112.07650)
  144. Mukherjee S, Wandelt B D and Silk J 2021 Mon. Not. Roy. Astron. Soc. 502 1136–1144 (Preprint 2012.15316)
  145. Max K, Platscher M and Smirnov J 2017 Phys. Rev. Lett. 119 111101 (Preprint 1703.07785)
  146. Beltrán Jiménez J, Ezquiaga J M and Heisenberg L 2020 JCAP 04 027 (Preprint 1912.06104)
  147. Ezquiaga J M and Zumalacárregui M 2020 Phys. Rev. D 102 124048 (Preprint 2009.12187)
  148. Palmese A and Kim A G 2021 Phys. Rev. D 103 103507 (Preprint 2005.04325)
  149. Akmal A, Pandharipande V R and Ravenhall D G 1998 Phys. Rev. C 58 1804–1828 (Preprint nucl-th/9804027)
  150. Vecchio A 2004 Phys. Rev. D 70 042001 (Preprint astro-ph/0304051)
  151. Wysocki D, Lange J and O’Shaughnessy R 2019 Phys. Rev. D 100 043012 (Preprint 1805.06442)
  152. Madau P and Dickinson M 2014 Ann. Rev. Astron. Astrophys. 52 415–486 (Preprint 1403.0007)
Citations (6)

Summary

  • The paper demonstrates that next-generation gravitational wave detectors can use standard sirens to achieve sub-percent precision in measuring cosmic expansion over vast redshifts.
  • The study integrates bright sirens from EM counterparts with dark and spectral sirens to address systematic biases and improve cosmological measurements.
  • The findings forecast that combining multiple GW probe techniques will resolve existing tensions in estimating key cosmological parameters.

Cosmography with Next-Generation Gravitational Wave Detectors

The paper "Cosmography with next-generation gravitational wave detectors" by Hsin-Yu Chen, Jose Maria Ezquiaga, and Ish Gupta provides a comprehensive analysis of the enhanced capabilities that future gravitational wave (GW) observatories will provide in the field of cosmology. The authors discuss the significant role that gravitational-wave standard sirens will play in refining the inference of cosmological parameters, exploring the vast spans of redshift that next-generation observatories will access. The paper provides insights into the methodologies and projections surrounding these advancements, including the analysis of systematic biases and the synthesis of bright and dark sirens from binary black holes, binary neutron stars, and neutron star-black hole mergers.

Summary of Methodologies

The paper delineates several methodologies for acquiring cosmic information via gravitational-wave standard sirens:

  1. Gravitational Wave Source Types: The analysis initially classifies gravitational wave sources into binary black holes, binary neutron stars, and neutron star-black hole mergers. Each type provides unique data for cosmological inference, and the precise waveform predictions inherent to general relativity enable their use as standard sirens.
  2. Utilization of Bright Sirens: By observing EM counterparts to GW events, such as kilonovae associated with neutron star mergers, one can acquire redshift information necessary for precise cosmological measurements. The paper discusses statistical techniques to counter systematic biases in redshift determination, instrumental calibration, and host peculiar velocities.
  3. Dark Sirens and Population Statistics: Investigating sources with undetected EM counterparts, known as dark sirens, is emphasized. The authors consider statistical techniques using galaxy catalogs and cross-correlations with large-scale structures to acquire redshift data. Despite larger uncertainties than bright sirens, they offer a pivotal measurement opportunity, notably with golden dark sirens.
  4. Spectral Sirens: The population mass spectrum is evaluated to gauge redshift, based on shifts in the detected mass distributions at different redshifted luminosity distances. This allows for the exploration of the Universe's expansion rate history with remarkable precision using the full catalog of detected events.

Results and Implications

The authors highlight robust numerical findings and make several forecasts:

  • Precision in H(z) Measurement: Next-generation detectors like Cosmic Explorer and the Einstein Telescope promise sub-percent accuracy for estimating the Hubble parameter H(z) across more than 10 billion years of cosmic history, breaking new ground in cosmology's effort to decipher dark energy and dark matter influences.
  • Extreme Sensitivity and Detection Range: The vast sensitivity of these detectors aims at observing events up to redshifts of approximately 100, encompassing the full spectrum of stellar-mass black holes across the Universe and reaching prior regions dominated by dark matter.
  • Combining Probe Techniques: The synergy of different standard sirens—amalgamating bright, dark, and spectral sirens—is anticipated to resolve existing tensions among electromagnetic-based cosmological measurements and gravitational waves.

Future Developments

The paper concludes by considering the theoretical and practical future implications of gravitational-wave astrophysics:

  • Increased Data Synthesis and Systematic Uncertainties: The expansive new data from forthcoming detector networks demands innovative analysis techniques and thorough treatment of systematic uncertainties. The use of enhanced precision in population synthesis models and non-parametric reconstructions is essential for valid cosmographical results.
  • Integration of Cosmological Frameworks: The potential to test alternative cosmological models, such as those involving dynamic dark energy or modifications of general relativity on large scales, will significantly benefit from these enhanced observational capabilities, allowing us to test new aspects of our Universe.

In conclusion, this paper paints an insightful picture of a future where gravitational wave detectors extend our reach into the far corners of the Universe, profoundly impacting our understanding of its expansion and the underlying cosmological models. While methodical in its analysis, it promises an exciting frontier for gravitational wave astronomy and its intersection with cosmology.