Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A moment-based Hermite WENO scheme with unified stencils for hyperbolic conservation laws (2402.03074v2)

Published 5 Feb 2024 in math.NA and cs.NA

Abstract: In this paper, a fifth-order moment-based Hermite weighted essentially non-oscillatory scheme with unified stencils (termed as HWENO-U) is proposed for hyperbolic conservation laws. The main idea of the HWENO-U scheme is to modify the first-order moment by a HWENO limiter only in the time discretizations using the same information of spatial reconstructions, in which the limiter not only overcomes spurious oscillations well, but also ensures the stability of the fully-discrete scheme. For the HWENO reconstructions, a new scale-invariant nonlinear weight is designed by incorporating only the integral average values of the solution, which keeps all properties of the original one while is more robust for simulating challenging problems with sharp scale variations. Compared with previous HWENO schemes, the advantages of the HWENO-U scheme are: (1) a simpler implemented process involving only a single HWENO reconstruction applied throughout the entire procedures without any modifications for the governing equations; (2) increased efficiency by utilizing the same candidate stencils, reconstructed polynomials, and linear and nonlinear weights in both the HWENO limiter and spatial reconstructions; (3) reduced problem-specific dependencies and improved rationality, as the nonlinear weights are identical for the function $u$ and its non-zero multiple $\zeta u$. Besides, the proposed scheme retains the advantages of previous HWENO schemes, including compact reconstructed stencils and the utilization of artificial linear weights. Extensive benchmarks are carried out to validate the accuracy, efficiency, resolution, and robustness of the proposed scheme.

Citations (1)

Summary

We haven't generated a summary for this paper yet.