Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bound impurities in a one-dimensional Bose lattice gas: low-energy properties and quench-induced dynamics (2402.03070v2)

Published 5 Feb 2024 in cond-mat.quant-gas, physics.atom-ph, and quant-ph

Abstract: We study two mobile bosonic impurities immersed in a one-dimensional optical lattice and interacting with a bosonic bath. We employ the exact diagonalization method for small periodic lattices to study stationary properties and dynamics. We consider the branch of repulsive interactions that induce the formation of bound impurities, akin to the bipolaron problem. A comprehensive study of ground-state and low-energy properties is presented, including an examination of the interaction strengths which induce the formation of a bound dimer of impurities. We also study the dynamics induced after an interaction quench to examine the stability of the bound dimers. We reveal that after large interaction quenches from strong to weak interactions the system can show large oscillations over time with revivals of the dimer states. We find that the oscillations are driven by selected eigenstates with phase-separated configurations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. L. P. Pitaevskii and S. Stringari, Bose-Einstein condensation and superfluidity, Oxford University Press, Oxford, ISBN 978-0-19-875888-4 978-0-19-882443-5 (2016).
  2. Nondissipative drag of superflow in a two-component Bose gas, Physical Review A 72(1), 013616 (2005), 10.1103/PhysRevA.72.013616.
  3. L. Parisi, G. Astrakharchik and S. Giorgini, Spin Dynamics and Andreev-Bashkin Effect in Mixtures of One-Dimensional Bose Gases, Physical Review Letters 121(2), 025302 (2018), 10.1103/PhysRevLett.121.025302.
  4. Counterflow Superfluidity of Two-Species Ultracold Atoms in a Commensurate Optical Lattice, Physical Review Letters 90(10), 100401 (2003), 10.1103/PhysRevLett.90.100401.
  5. Counterflow and paired superfluidity in one-dimensional Bose mixtures in optical lattices, Physical Review A 80(2), 023619 (2009), 10.1103/PhysRevA.80.023619.
  6. D. Petrov, Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture, Physical Review Letters 115(15), 155302 (2015), 10.1103/PhysRevLett.115.155302.
  7. Quantum liquid droplets in a mixture of Bose-Einstein condensates, Science 359(6373), 301 (2018), 10.1126/science.aao5686.
  8. Self-Bound Quantum Droplets of Atomic Mixtures in Free Space, Physical Review Letters 120(23), 235301 (2018), 10.1103/PhysRevLett.120.235301.
  9. Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates, Physical Review Letters 120(13), 135301 (2018), 10.1103/PhysRevLett.120.135301.
  10. Observation of quantum droplets in a heteronuclear bosonic mixture, Physical Review Research 1(3), 033155 (2019), 10.1103/PhysRevResearch.1.033155.
  11. Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases, Reports on Progress in Physics 77(3), 034401 (2014), 10.1088/0034-4885/77/3/034401.
  12. Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate, Physical Review Letters 117(5), 055302 (2016), 10.1103/PhysRevLett.117.055302.
  13. Bose Polarons in the Strongly Interacting Regime, Physical Review Letters 117(5), 055301 (2016), 10.1103/PhysRevLett.117.055301.
  14. Bose polarons near quantum criticality, Science 368(6487), 190 (2020), 10.1126/science.aax5850.
  15. I. Bloch, Ultracold quantum gases in optical lattices, Nature Physics 1(1), 23 (2005), 10.1038/nphys138.
  16. Cold Bosonic Atoms in Optical Lattices, Physical Review Letters 81(15), 3108 (1998), 10.1103/PhysRevLett.81.3108.
  17. Exact Diagonalization Methods for Quantum Systems, Computers in Physics 7(4), 400 (1993), 10.1063/1.4823192.
  18. Exact diagonalization: the Bose–Hubbard model as an example, European Journal of Physics 31(3), 591 (2010), 10.1088/0143-0807/31/3/016.
  19. Cold bosons in optical lattices: a tutorial for exact diagonalization, Journal of Physics B: Atomic, Molecular and Optical Physics 50(11), 113001 (2017), 10.1088/1361-6455/aa68b1.
  20. S. R. White, Density matrix formulation for quantum renormalization groups, Physical Review Letters 69(19), 2863 (1992), 10.1103/PhysRevLett.69.2863.
  21. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326(1), 96 (2011), 10.1016/j.aop.2010.09.012.
  22. T. Giamarchi, Quantum physics in one dimension, No. 121 in The international series of monographs on physics. Oxford University Press, Oxford, ISBN 978-0-19-852500-4 (2004).
  23. Few-body Bose gases in low dimensions—A laboratory for quantum dynamics, Physics Reports 1042, 1 (2023), 10.1016/j.physrep.2023.10.004.
  24. T. Sowiński and M. A. García-March, One-dimensional mixtures of several ultracold atoms: a review, Reports on Progress in Physics 82(10), 104401 (2019), 10.1088/1361-6633/ab3a80.
  25. Quantum droplets of bosonic mixtures in a one-dimensional optical lattice, Physical Review Research 2(2), 022008 (2020), 10.1103/PhysRevResearch.2.022008.
  26. Universal Dimerized Quantum Droplets in a One-Dimensional Lattice, Physical Review Letters 126(2), 023001 (2021), 10.1103/PhysRevLett.126.023001.
  27. Preparation of the Spin-Mott State: A Spinful Mott Insulator of Repulsively Bound Pairs, Physical Review Letters 128(9), 093401 (2022), 10.1103/PhysRevLett.128.093401.
  28. Insulator phases of a mixture of spinor fermions and hard-core bosons, Physical Review A 100(6), 063620 (2019), 10.1103/PhysRevA.100.063620.
  29. Mixture of scalar bosons and two-color fermions in one dimension: Superfluid-insulator transitions, Physical Review A 102(3), 033341 (2020), 10.1103/PhysRevA.102.033341.
  30. J. Schönmeier-Kromer and L. Pollet, Competing instabilities at long length scales in the one-dimensional Bose-Fermi-Hubbard model at commensurate fillings, Physical Review B 107(5), 054502 (2023), 10.1103/PhysRevB.107.054502.
  31. M. Pasek and G. Orso, Induced pairing of fermionic impurities in a one-dimensional strongly correlated Bose gas, Physical Review B 100(24), 245419 (2019), 10.1103/PhysRevB.100.245419.
  32. Interspecies entanglement with impurity atoms in a lattice gas, New Journal of Physics 22(8), 083017 (2020), 10.1088/1367-2630/ab9fc1.
  33. V. R. Yordanov and F. Isaule, Mobile impurities interacting with a few one-dimensional lattice bosons, Journal of Physics B: Atomic, Molecular and Optical Physics 56(4), 045301 (2023), 10.1088/1361-6455/acb51b.
  34. G. A. Domínguez-Castro, Bose Polaron in a One-Dimensional Lattice with Power-Law Hopping, Atoms 11(8), 110 (2023), 10.3390/atoms11080110.
  35. Observation of Reduced Three-Body Recombination in a Correlated 1D Degenerate Bose Gas, Physical Review Letters 92(19), 190401 (2004), 10.1103/PhysRevLett.92.190401.
  36. Bipolarons, Reports on Progress in Physics 57(12), 1197 (1994), 10.1088/0034-4885/57/12/001.
  37. A. S. Alexandrov, Unconventional pairing symmetry of layered superconductors caused by acoustic phonons, Physical Review B 77(9), 094502 (2008), 10.1103/PhysRevB.77.094502.
  38. Bipolarons in a Bose-Einstein Condensate, Physical Review Letters 121(1), 013401 (2018), 10.1103/PhysRevLett.121.013401.
  39. A. S. Dehkharghani, A. G. Volosniev and N. T. Zinner, Coalescence of Two Impurities in a Trapped One-dimensional Bose Gas, Physical Review Letters 121(8), 080405 (2018), 10.1103/PhysRevLett.121.080405.
  40. Correlated quantum dynamics of two quenched fermionic impurities immersed in a Bose-Einstein condensate, Physical Review A 100(2), 023620 (2019), 10.1103/PhysRevA.100.023620.
  41. Many-body quantum dynamics and induced correlations of Bose polarons, New Journal of Physics 22(4), 043007 (2020), 10.1088/1367-2630/ab7599.
  42. M. Will, G. Astrakharchik and M. Fleischhauer, Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong Coupling Regime, Physical Review Letters 127(10), 103401 (2021), 10.1103/PhysRevLett.127.103401.
  43. J. Jager and R. Barnett, The effect of boson–boson interaction on the bipolaron formation, New Journal of Physics 24(10), 103032 (2022), 10.1088/1367-2630/ac9804.
  44. S. Dutta and E. J. Mueller, Variational study of polarons and bipolarons in a one-dimensional Bose lattice gas in both the superfluid and the Mott-insulator regimes, Physical Review A 88(5), 053601 (2013), 10.1103/PhysRevA.88.053601.
  45. Doping a lattice-trapped bosonic species with impurities: from ground state properties to correlated tunneling dynamics, New Journal of Physics 22(8), 083003 (2020), 10.1088/1367-2630/ab9e34.
  46. Transition from a Strongly Interacting 1D Superfluid to a Mott Insulator, Physical Review Letters 92(13), 130403 (2004), 10.1103/PhysRevLett.92.130403.
  47. I. Amelio and N. Goldman, Polaron spectroscopy of interacting Fermi systems: insights from exact diagonalization, 10.48550/arXiv.2309.07019, ArXiv:2309.07019 [cond-mat] (2023).
  48. R. B. Lehoucq, D. C. Sorensen and C. Yang, Arpack Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia (1998).
  49. K. Keiler and P. Schmelcher, State engineering of impurities in a lattice by coupling to a Bose gas, New Journal of Physics 20(10), 103042 (2018), 10.1088/1367-2630/aae98f.
  50. T. D. Kühner and H. Monien, Phases of the one-dimensional Bose-Hubbard model, Physical Review B 58(22), R14741 (1998), 10.1103/PhysRevB.58.R14741.
  51. C. Menotti and S. Stringari, Detection of pair-superfluidity for bosonic mixtures in optical lattices, Physical Review A 81(4), 045604 (2010), 10.1103/PhysRevA.81.045604.
  52. G.-S. Paraoanu, Persistent currents in a circular array of Bose-Einstein condensates, Physical Review A 67(2), 023607 (2003), 10.1103/PhysRevA.67.023607.
  53. R. B. Sidje, Expokit: a software package for computing matrix exponentials, ACM Transactions on Mathematical Software 24(1), 130 (1998), 10.1145/285861.285868.
  54. Quench Dynamics and Orthogonality Catastrophe of Bose Polarons, Physical Review Letters 122(18), 183001 (2019), 10.1103/PhysRevLett.122.183001.
  55. Mobile impurity in a Bose-Einstein condensate and the orthogonality catastrophe, Physical Review A 103(1), 013317 (2021), 10.1103/PhysRevA.103.013317.
  56. Lattice Polarons across the Superfluid to Mott Insulator Transition, Physical Review Letters 130(17), 173002 (2023), 10.1103/PhysRevLett.130.173002.
  57. Polarons and bipolarons in a two-dimensional square lattice, SciPost Physics 14(6), 143 (2023), 10.21468/SciPostPhys.14.6.143.
  58. Emergent Mott insulators at noninteger fillings and devil’s staircase induced by attractive interaction in many-body polarons, Physical Review A 107(6), 063309 (2023), 10.1103/PhysRevA.107.063309.
  59. L. A. Peña Ardila and T. Pohl, Ground-state properties of dipolar Bose polarons, Journal of Physics B: Atomic, Molecular and Optical Physics 52(1), 015004 (2019), 10.1088/1361-6455/aaf35e.
  60. Non-equilibrium dynamics of dipolar polarons, SciPost Physics 15(6), 232 (2023), 10.21468/SciPostPhys.15.6.232.
  61. Universal properties of dipolar Bose polarons in two dimensions, 10.48550/arXiv.2305.19846, ArXiv:2305.19846 [cond-mat] (2023).
  62. Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons, SciPost Physics 6(1), 010 (2019), 10.21468/SciPostPhys.6.1.010.
  63. Crossover from attractive to repulsive induced interactions and bound states of two distinguishable Bose polarons, SciPost Physics 16(1), 023 (2024), 10.21468/SciPostPhys.16.1.023.
  64. Bipolarons and multipolarons consisting of impurity atoms in a Bose-Einstein condensate, Physical Review A 88(1), 013613 (2013), 10.1103/PhysRevA.88.013613.
  65. Quantum droplets with particle imbalance in one-dimensional optical lattices, 10.48550/arXiv.2306.12283, ArXiv:2306.12283 [cond-mat, physics:quant-ph] (2023).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com