Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Stochastic Stopping Games: A Generator and Benchmark Library (2402.02571v1)

Published 4 Feb 2024 in cs.CC and cs.GT

Abstract: Simple Stochastic Games (SSGs) were introduced by Anne Condon in 1990, as the simplest version of Stochastic Games for which there is no known polynomial-time algorithm. Condon showed that Stochastic Games are polynomial-time reducible to SSGs, which in turn are polynomial-time reducible to Stopping Games. SSGs are games where all decisions are binary and every move has a random outcome with a known probability distribution. Stopping Games are SSGs that are guaranteed to terminate. There are many algorithms for SSGs, most of which are fast in practice, but they all lack theoretical guarantees for polynomial-time convergence. The pursuit of a polynomial-time algorithm for SSGs is an active area of research. This paper is intended to support such research by making it easier to study the graphical structure of SSGs. Our contributions are: (1) a generating algorithm for Stopping Games, (2) a proof that the algorithm can generate any game, (3) a list of additional polynomial-time reductions that can be made to Stopping Games, (4) an open source generator for generating fully reduced instances of Stopping Games that comes with instructions and is fully documented, (5) a benchmark set of such instances, (6) and an analysis of how two main algorithm types perform on our benchmark set.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com