Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Downlink Localization in Near-Field and Far-Field (2402.02473v1)

Published 4 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: This paper considers the problem of downlink localization of user equipment devices (UEs) that are either in the near-field (NF) or in the far-field (FF) of the array of the serving base station (BS). We propose a dual signaling scheme, which can be implemented at the BS, for localizing such UEs. The first scheme assumes FF, while the other assumes NF conditions. Both schemes comprise a beam-sweeping technique, employed by the BS, and a localization algorithm, employed by the UEs. The FF-based scheme enables beam-steering with a low signaling overhead, which is utilized for the proposed localization algorithm, while the NF-based scheme operates with a higher complexity. Specifically, our proposed localization scheme takes advantage of the relaxed structure of the FF, which yields low computational complexity, but is not suitable for operating in the NF. Since the compatibility and the performance of the FF- based scheme depends on the BS-to-UE distance, we study the limitations of FF-based procedure, explore the trade-off in terms of performance and resource requirements for the two schemes, and propose a triggering condition for operating the component schemes of the dual scheme. Also, we study the performance of an iterative localization algorithm that takes into account the accuracy-complexity trade-off and adapts to the actual position of the UE. We find that the conventional Fraunhofer distance is not sufficient for adapting localization algorithms in the mixed NF and FF environment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com