Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The flavor composition of ultra-high-energy cosmic neutrinos: measurement forecasts for in-ice radio-based EeV neutrino telescopes (2402.02432v2)

Published 4 Feb 2024 in astro-ph.HE

Abstract: In-ice radio-detection is a promising technique to discover and characterize ultra-high-energy (UHE) neutrinos, with energies above 100 PeV, adopted by present - ARA, ARIANNA, and RNO-G - and planned - IceCube-Gen2. So far, their ability to measure neutrino flavor has remained unexplored. We show and quantify how the neutrino flavor can be measured with in-ice radio detectors using two complementary detection channels. The first channel, sensitive to $\nu_e$, identifies them via their charged-current interactions, whose radio emission is elongated in time due to the Landau-Pomeranchuk-Migdal effect. The second channel, sensitive to $\nu_\mu$ and $\nu_\tau$, identifies events made up of multiple showers generated by the muons and taus they generate. We show this in state-of-the-art forecasts geared at IceCube-Gen2, for representative choices of the UHE neutrino flux. This newfound sensitivity could allow us to infer the UHE neutrino flavor composition at their sources - and thus the neutrino production mechanism - and to probe UHE neutrino physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (110)
  1. V. S. Berezinsky and G. T. Zatsepin, Cosmic rays at ultrahigh-energies (neutrino?), Phys. Lett. B 28, 423 (1969).
  2. K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16, 748 (1966).
  3. G. T. Zatsepin and V. A. Kuzmin, Upper limit of the spectrum of cosmic rays, JETP Lett. 4, 78 (1966).
  4. M. G. Aartsen et al. (IceCube), Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data, Phys. Rev. D 98, 062003 (2018), arXiv:1807.01820 [astro-ph.HE] .
  5. A. Aab et al. (Pierre Auger), Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory, JCAP 10, 022, arXiv:1906.07422 [astro-ph.HE] .
  6. R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49, 110501 (2022), arXiv:2203.05591 [hep-ph] .
  7. M. Ackermann et al., High-energy and ultra-high-energy neutrinos: A Snowmass white paper, JHEAp 36, 55 (2022), arXiv:2203.08096 [hep-ph] .
  8. C. Guépin, K. Kotera, and F. Oikonomou, High-energy neutrino transients and the future of multi-messenger astronomy, Nature Rev. Phys. 4, 697 (2022), arXiv:2207.12205 [astro-ph.HE] .
  9. M. G. Aartsen et al. (IceCube-Gen2), IceCube-Gen2: the window to the extreme Universe, J. Phys. G 48, 060501 (2021), arXiv:2008.04323 [astro-ph.HE] .
  10. R. Abbasi et al. (IceCube-Gen2), Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos, PoS ICRC2023, 1123 (2023), arXiv:2308.15220 [astro-ph.HE] .
  11. M. Bustamante, J. F. Beacom, and W. Winter, Theoretically palatable flavor combinations of astrophysical neutrinos, Phys. Rev. Lett. 115, 161302 (2015), arXiv:1506.02645 [astro-ph.HE] .
  12. J. P. Rachen and P. Mészáros, Photohadronic neutrinos from transients in astrophysical sources, Phys. Rev. D 58, 123005 (1998), arXiv:astro-ph/9802280 .
  13. H. Athar, M. Jezabek, and O. Yasuda, Effects of neutrino mixing on high-energy cosmic neutrino flux, Phys. Rev. D 62, 103007 (2000), arXiv:hep-ph/0005104 .
  14. R. M. Crocker, F. Melia, and R. R. Volkas, Searching for long wavelength neutrino oscillations in the distorted neutrino spectrum of galactic supernova remnants, Astrophys. J. Suppl. 141, 147 (2002), arXiv:astro-ph/0106090 .
  15. G. Barenboim and C. Quigg, Neutrino observatories can characterize cosmic sources and neutrino properties, Phys. Rev. D 67, 073024 (2003), arXiv:hep-ph/0301220 .
  16. J. F. Beacom and J. Candia, Shower power: Isolating the prompt atmospheric neutrino flux using electron neutrinos, JCAP 11, 009, arXiv:hep-ph/0409046 .
  17. T. Kashti and E. Waxman, Flavoring astrophysical neutrinos: Flavor ratios depend on energy, Phys. Rev. Lett. 95, 181101 (2005), arXiv:astro-ph/0507599 .
  18. O. Mena, I. Mocioiu, and S. Razzaque, Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources, Phys. Rev. D 75, 063003 (2007), arXiv:astro-ph/0612325 .
  19. M. Kachelrieß and R. Tomàs, High energy neutrino yields from astrophysical sources I: Weakly magnetized sources, Phys. Rev. D 74, 063009 (2006), arXiv:astro-ph/0606406 .
  20. P. Lipari, M. Lusignoli, and D. Meloni, Flavor Composition and Energy Spectrum of Astrophysical Neutrinos, Phys. Rev. D 75, 123005 (2007), arXiv:0704.0718 [astro-ph] .
  21. A. Esmaili and Y. Farzan, An Analysis of Cosmic Neutrinos: Flavor Composition at Source and Neutrino Mixing Parameters, Nucl. Phys. B 821, 197 (2009), arXiv:0905.0259 [hep-ph] .
  22. S. Choubey and W. Rodejohann, Flavor Composition of UHE Neutrinos at Source and at Neutrino Telescopes, Phys. Rev. D 80, 113006 (2009), arXiv:0909.1219 [hep-ph] .
  23. W. Winter, Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube, Phys. Rev. D 88, 083007 (2013), arXiv:1307.2793 [astro-ph.HE] .
  24. M. Bustamante and M. Ahlers, Inferring the flavor of high-energy astrophysical neutrinos at their sources, Phys. Rev. Lett. 122, 241101 (2019), arXiv:1901.10087 [astro-ph.HE] .
  25. M. Ackermann et al., Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos, Bull. Am. Astron. Soc. 51, 185 (2019a), arXiv:1903.04334 [astro-ph.HE] .
  26. M. Bustamante and I. Tamborra, Using high-energy neutrinos as cosmic magnetometers, Phys. Rev. D 102, 123008 (2020), arXiv:2009.01306 [astro-ph.HE] .
  27. B. Telalovic and M. Bustamante, Flavor Anisotropy in the High-Energy Astrophysical Neutrino Sky,   (2023), arXiv:2310.15224 [astro-ph.HE] .
  28. P. D. Serpico, Probing the 2-3 leptonic mixing at high-energy neutrino telescopes, Phys. Rev. D 73, 047301 (2006), arXiv:hep-ph/0511313 .
  29. S. Pakvasa, W. Rodejohann, and T. J. Weiler, Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements, JHEP 02, 005, arXiv:0711.4517 [hep-ph] .
  30. A. Esmaili, Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Phys. Rev. D 81, 013006 (2010), arXiv:0909.5410 [hep-ph] .
  31. M. Bustamante, A. M. Gago, and C. Peña-Garay, Energy-Independent New Physics in the Flavour Ratios of High-Energy Astrophysical Neutrinos, JHEP 04, 066, arXiv:1001.4878 [hep-ph] .
  32. P. Mehta and W. Winter, Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects, JCAP 03, 041, arXiv:1101.2673 [hep-ph] .
  33. P. Baerwald, M. Bustamante, and W. Winter, Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, JCAP 10, 020, arXiv:1208.4600 [astro-ph.CO] .
  34. L. Fu, C. M. Ho, and T. J. Weiler, Cosmic Neutrino Flavor Ratios with Broken νμ−ντsubscript𝜈𝜇subscript𝜈𝜏\nu_{\mu}-\nu_{\tau}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT Symmetry, Phys. Lett. B 718, 558 (2012), arXiv:1209.5382 [hep-ph] .
  35. S. Pakvasa, A. Joshipura, and S. Mohanty, Explanation for the low flux of high energy astrophysical muon-neutrinos, Phys. Rev. Lett. 110, 171802 (2013), arXiv:1209.5630 [hep-ph] .
  36. X.-J. Xu, H.-J. He, and W. Rodejohann, Constraining Astrophysical Neutrino Flavor Composition from Leptonic Unitarity, JCAP 12, 039, arXiv:1407.3736 [hep-ph] .
  37. C. A. Argüelles, T. Katori, and J. Salvadó, New Physics in Astrophysical Neutrino Flavor, Phys. Rev. Lett. 115, 161303 (2015), arXiv:1506.02043 [hep-ph] .
  38. I. M. Shoemaker and K. Murase, Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes, Phys. Rev. D 93, 085004 (2016), arXiv:1512.07228 [astro-ph.HE] .
  39. P. F. de Salas, R. A. Lineros, and M. Tórtola, Neutrino propagation in the galactic dark matter halo, Phys. Rev. D 94, 123001 (2016), arXiv:1601.05798 [astro-ph.HE] .
  40. M. Bustamante, J. F. Beacom, and K. Murase, Testing decay of astrophysical neutrinos with incomplete information, Phys. Rev. D 95, 063013 (2017), arXiv:1610.02096 [astro-ph.HE] .
  41. M. Bustamante and S. K. Agarwalla, Universe’s Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos, Phys. Rev. Lett. 122, 061103 (2019), arXiv:1808.02042 [astro-ph.HE] .
  42. Y. Farzan and S. Palomares-Ruiz, Flavor of cosmic neutrinos preserved by ultralight dark matter, Phys. Rev. D 99, 051702 (2019), arXiv:1810.00892 [hep-ph] .
  43. M. Ahlers, M. Bustamante, and S. Mu, Unitarity Bounds of Astrophysical Neutrinos, Phys. Rev. D 98, 123023 (2018), arXiv:1810.00893 [astro-ph.HE] .
  44. V. Brdar and R. S. L. Hansen, IceCube Flavor Ratios with Identified Astrophysical Sources: Towards Improving New Physics Testability, JCAP 02, 023, arXiv:1812.05541 [hep-ph] .
  45. A. Palladino, The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario?, Eur. Phys. J. C 79, 500 (2019), arXiv:1902.08630 [astro-ph.HE] .
  46. M. Ackermann et al., Fundamental Physics with High-Energy Cosmic Neutrinos, Bull. Am. Astron. Soc. 51, 215 (2019b), arXiv:1903.04333 [astro-ph.HE] .
  47. M. Ahlers, M. Bustamante, and N. G. N. Willesen, Flavors of astrophysical neutrinos with active-sterile mixing, JCAP 07, 029, arXiv:2009.01253 [hep-ph] .
  48. S. Karmakar, S. Pandey, and S. Rakshit, Astronomy with energy dependent flavour ratios of extragalactic neutrinos, JHEP 10, 004, arXiv:2010.07336 [hep-ph] .
  49. C. A. Argüelles et al., Snowmass white paper: beyond the standard model effects on neutrino flavor: Submitted to the proceedings of the US community study on the future of particle physics (Snowmass 2021), Eur. Phys. J. C 83, 15 (2023), arXiv:2203.10811 [hep-ph] .
  50. O. Mena, S. Palomares-Ruiz, and A. C. Vincent, Flavor Composition of the High-Energy Neutrino Events in IceCube, Phys. Rev. Lett. 113, 091103 (2014), arXiv:1404.0017 [astro-ph.HE] .
  51. S. Palomares-Ruiz, A. C. Vincent, and O. Mena, Spectral analysis of the high-energy IceCube neutrinos, Phys. Rev. D 91, 103008 (2015), arXiv:1502.02649 [astro-ph.HE] .
  52. M. G. Aartsen et al. (IceCube), Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube, Phys. Rev. Lett. 114, 171102 (2015a), arXiv:1502.03376 [astro-ph.HE] .
  53. A. Palladino and F. Vissani, The natural parameterization of cosmic neutrino oscillations, Eur. Phys. J. C 75, 433 (2015), arXiv:1504.05238 [hep-ph] .
  54. M. G. Aartsen et al. (IceCube), A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube, Astrophys. J. 809, 98 (2015b), arXiv:1507.03991 [astro-ph.HE] .
  55. A. C. Vincent, S. Palomares-Ruiz, and O. Mena, Analysis of the 4-year IceCube high-energy starting events, Phys. Rev. D 94, 023009 (2016), arXiv:1605.01556 [astro-ph.HE] .
  56. R. Abbasi et al. (IceCube), Detection of astrophysical tau neutrino candidates in IceCube, Eur. Phys. J. C 82, 1031 (2022a), arXiv:2011.03561 [hep-ex] .
  57. G. A. Askar’yan, Excess negative charge of an electron-photon shower and its coherent radio emission, Zh. Eksp. Teor. Fiz. 41, 616 (1961).
  58. I. Kravchenko et al. (RICE), Performance and simulation of the RICE detector, Astropart. Phys. 19, 15 (2003), arXiv:astro-ph/0112372 .
  59. A. Anker et al., A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data, JCAP 03, 053, arXiv:1909.00840 [astro-ph.IM] .
  60. P. Allison et al. (ARA), Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations, Phys. Rev. D 102, 043021 (2020), arXiv:1912.00987 [astro-ph.HE] .
  61. A. Anker et al. (ARIANNA), Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole, JINST 15 (09), P09039, arXiv:2006.03027 [astro-ph.IM] .
  62. A. Anker et al. (ARIANNA), Measuring the polarization reconstruction resolution of the ARIANNA neutrino detector with cosmic rays, JCAP 04 (04), 022, arXiv:2112.01501 [astro-ph.HE] .
  63. P. Allison et al. (ARA), Low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array, Phys. Rev. D 105, 122006 (2022), arXiv:2202.07080 [astro-ph.HE] .
  64. J. A. Aguilar et al. (RNO-G), Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G), JINST 16 (03), P03025, [Erratum: JINST 18, E03001 (2023)], arXiv:2010.12279 [astro-ph.IM] .
  65. IceCube-Gen2 Technical Design Report, https://icecube-gen2.wisc.edu/science/publications/TDR.
  66. V. B. Valera, M. Bustamante, and C. Glaser, The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery, JHEP 06, 105, arXiv:2204.04237 [hep-ph] .
  67. D. F. G. Fiorillo, M. Bustamante, and V. B. Valera, Near-future discovery of point sources of ultra-high-energy neutrinos, JCAP 03, 026, arXiv:2205.15985 [astro-ph.HE] .
  68. V. B. Valera, M. Bustamante, and C. Glaser, Near-future discovery of the diffuse flux of ultrahigh-energy cosmic neutrinos, Phys. Rev. D 107, 043019 (2023a), arXiv:2210.03756 [astro-ph.HE] .
  69. V. B. Valera, M. Bustamante, and O. Mena, Joint measurement of the ultra-high-energy neutrino spectrum and cross section,   (2023b), arXiv:2308.07709 [astro-ph.HE] .
  70. L. A. Anchordoqui, Ultra-High-Energy Cosmic Rays, Phys. Rept. 801, 1 (2019), arXiv:1807.09645 [astro-ph.HE] .
  71. R. Alves Batista et al., Open Questions in Cosmic-Ray Research at Ultrahigh Energies, Front. Astron. Space Sci. 6, 23 (2019), arXiv:1903.06714 [astro-ph.HE] .
  72. I. Esteban, S. Prohira, and J. F. Beacom, Detector requirements for model-independent measurements of ultrahigh energy neutrino cross sections, Phys. Rev. D 106, 023021 (2022a), arXiv:2205.09763 [hep-ph] .
  73. C. Glaser et al., NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector, Eur. Phys. J. C 80, 77 (2020), arXiv:1906.01670 [astro-ph.IM] .
  74. D. García-Fernández, A. Nelles, and C. Glaser, Signatures of secondary leptons in radio-neutrino detectors in ice, Phys. Rev. D 102, 083011 (2020), arXiv:2003.13442 [astro-ph.HE] .
  75. C. Glaser, D. García-Fernández, and A. Nelles, Prospects for neutrino-flavor physics with in-ice radio detectors, PoS ICRC2021, 1231 (2021).
  76. O. Ericsson, Investigations into neutrino flavor reconstruction from radio detector data using convolutional neural networks, Bachelor’s thesis, Uppsala University (2021).
  77. S. Stjärnholm, O. Ericsson, and C. Glaser, Neutrino direction and flavor reconstruction from radio detector data using deep convolutional neural networks, PoS ICRC2021, 1055 (2021).
  78. R. Brock et al. (CTEQ), Handbook of perturbative QCD: Version 1.0, Rev. Mod. Phys. 67, 157 (1995).
  79. J. M. Conrad, M. H. Shaevitz, and T. Bolton, Precision measurements with high-energy neutrino beams, Rev. Mod. Phys. 70, 1341 (1998), arXiv:hep-ex/9707015 .
  80. J. A. Formaggio and G. P. Zeller, From eV to EeV: Neutrino Cross Sections Across Energy Scales, Rev. Mod. Phys. 84, 1307 (2012), arXiv:1305.7513 [hep-ex] .
  81. M. G. Aartsen et al. (IceCube), Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption, Nature 551, 596 (2017), arXiv:1711.08119 [hep-ex] .
  82. M. Bustamante and A. Connolly, Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers, Phys. Rev. Lett. 122, 041101 (2019), arXiv:1711.11043 [astro-ph.HE] .
  83. M. G. Aartsen et al. (IceCube), Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube, Phys. Rev. D 99, 032004 (2019), arXiv:1808.07629 [hep-ex] .
  84. R. Abbasi et al. (IceCube), Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube, Phys. Rev. D 104, 022001 (2021a), arXiv:2011.03560 [hep-ex] .
  85. S. Barwick et al. (ARIANNA), Capabilities of ARIANNA: Neutrino Pointing Resolution and Implications for Future Ultra-high Energy Neutrino Astronomy, PoS ICRC2021, 1151 (2021).
  86. J. A. Aguilar et al., Reconstructing the neutrino energy for in-ice radio detectors: A study for the Radio Neutrino Observatory Greenland (RNO-G), Eur. Phys. J. C 82, 147 (2022), arXiv:2107.02604 [astro-ph.HE] .
  87. I. Plaisier, S. Bouma, and A. Nelles, Reconstructing the arrival direction of neutrinos in deep in-ice radio detectors, Eur. Phys. J. C 83, 443 (2023), arXiv:2302.00054 [astro-ph.HE] .
  88. S. Bouma et al. (IceCube-Gen2), Direction reconstruction performance for IceCube-Gen2 Radio, PoS ICRC2023, 1045 (2023).
  89. N. Heyer et al. (IceCube-Gen2), Deep Learning Based Event Reconstruction for the IceCube-Gen2 Radio Detector, PoS ICRC2023, 1102 (2023), arXiv:2308.00164 [astro-ph.HE] .
  90. L. D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953).
  91. L. D. Landau and I. Pomeranchuk, Electron-Cascade Processes at Ultra-High Energies, Dokl. Akad. Nauk SSSR 92, 10.1016/b978-0-08-010586-4.50081-x (1965).
  92. A. B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103, 1811 (1956).
  93. L. Gerhardt and S. R. Klein, Electron and Photon Interactions in the Regime of Strong LPM Suppression, Phys. Rev. D 82, 074017 (2010), arXiv:1007.0039 [hep-ph] .
  94. S. R. Klein, S. A. Robertson, and R. Vogt, Nuclear effects in high-energy neutrino interactions, Phys. Rev. C 102, 015808 (2020), arXiv:2001.03677 [hep-ph] .
  95. J. Álvarez-Muñiz, A. Romero-Wolf, and E. Zas, Practical and accurate calculations of Askaryan radiation, Phys. Rev. D 84, 103003 (2011), arXiv:1106.6283 [astro-ph.HE] .
  96. R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
  97. S. Ritz and D. Seckel, Detailed Neutrino Spectra From Cold Dark Matter Annihilations in the Sun, Nucl. Phys. B 304, 877 (1988).
  98. F. Halzen and D. Saltzberg, Tau-neutrino appearance with a 1000 Megaparsec baseline, Phys. Rev. Lett. 81, 4305 (1998), arXiv:hep-ph/9804354 .
  99. V. B. Valera and M. Bustamante,  (2023), private communication.
  100. R. Abbasi et al. (IceCube), IceCube Search for Earth-traversing ultra-high energy Neutrinos, PoS ICRC2021, 1170 (2021b).
  101. F. Testagrossa, D. F. G. Fiorillo, and M. Bustamante, Two-detector flavor sensitivity to ultra-high-energy cosmic neutrinos,  (2023), arXiv:2310.12215 [astro-ph.HE] .
  102. D. Bergman (Telescope Array), Telescope Array Combined Fit to Cosmic Ray Spectrum and Composition, PoS ICRC2021, 338 (2021).
  103. A. van Vliet, R. Alves Batista, and J. R. Hörandel, Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos, Phys. Rev. D 100, 021302 (2019), arXiv:1901.01899 [astro-ph.HE] .
  104. R. Abbasi et al. (IceCube), Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data, Astrophys. J. 928, 50 (2022b), arXiv:2111.10299 [astro-ph.HE] .
  105. K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition,   (2014), arXiv:1409.1556 [cs.CV] .
  106. A. Anker et al. (ARIANNA), Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning, JINST 17 (03), P03007, arXiv:2112.01031 [astro-ph.IM] .
  107. A. Coleman et al. (RNO-G), Enhancing the Sensitivity of RNO-G Using a Machine-learning Based Trigger, PoS ICRC2023, 1100 (2023).
  108. K. Fang and K. Murase, Linking High-Energy Cosmic Particles by Black Hole Jets Embedded in Large-Scale Structures, Nature Phys. 14, 396 (2018), arXiv:1704.00015 [astro-ph.HE] .
  109. M. S. Muzio, M. Unger, and G. R. Farrar, Progress towards characterizing ultrahigh energy cosmic ray sources, Phys. Rev. D 100, 103008 (2019), arXiv:1906.06233 [astro-ph.HE] .
  110. M. S. Muzio, G. R. Farrar, and M. Unger, Probing the environments surrounding ultrahigh energy cosmic ray accelerators and their implications for astrophysical neutrinos, Phys. Rev. D 105, 023022 (2022), arXiv:2108.05512 [astro-ph.HE] .
Citations (5)

Summary

We haven't generated a summary for this paper yet.