Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Quality Matters: Suicide Intention Detection on Social Media Posts Using RoBERTa-CNN (2402.02262v2)

Published 3 Feb 2024 in cs.CL and cs.AI

Abstract: Suicide remains a pressing global health concern, necessitating innovative approaches for early detection and intervention. This paper focuses on identifying suicidal intentions in posts from the SuicideWatch subreddit by proposing a novel deep-learning approach that utilizes the state-of-the-art RoBERTa-CNN model. The robustly Optimized BERT Pretraining Approach (RoBERTa) excels at capturing textual nuances and forming semantic relationships within the text. The remaining Convolutional Neural Network (CNN) head enhances RoBERTa's capacity to discern critical patterns from extensive datasets. To evaluate RoBERTa-CNN, we conducted experiments on the Suicide and Depression Detection dataset, yielding promising results. For instance, RoBERTa-CNN achieves a mean accuracy of 98% with a standard deviation (STD) of 0.0009. Additionally, we found that data quality significantly impacts the training of a robust model. To improve data quality, we removed noise from the text data while preserving its contextual content through either manually cleaning or utilizing the OpenAI API.

Citations (1)

Summary

We haven't generated a summary for this paper yet.