Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wavelet-Decoupling Contrastive Enhancement Network for Fine-Grained Skeleton-Based Action Recognition (2402.02210v1)

Published 3 Feb 2024 in cs.CV and cs.MM

Abstract: Skeleton-based action recognition has attracted much attention, benefiting from its succinctness and robustness. However, the minimal inter-class variation in similar action sequences often leads to confusion. The inherent spatiotemporal coupling characteristics make it challenging to mine the subtle differences in joint motion trajectories, which is critical for distinguishing confusing fine-grained actions. To alleviate this problem, we propose a Wavelet-Attention Decoupling (WAD) module that utilizes discrete wavelet transform to effectively disentangle salient and subtle motion features in the time-frequency domain. Then, the decoupling attention adaptively recalibrates their temporal responses. To further amplify the discrepancies in these subtle motion features, we propose a Fine-grained Contrastive Enhancement (FCE) module to enhance attention towards trajectory features by contrastive learning. Extensive experiments are conducted on the coarse-grained dataset NTU RGB+D and the fine-grained dataset FineGYM. Our methods perform competitively compared to state-of-the-art methods and can discriminate confusing fine-grained actions well.

Summary

We haven't generated a summary for this paper yet.