Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion Cross-domain Recommendation (2402.02182v1)

Published 3 Feb 2024 in cs.IR and cs.LG

Abstract: It is always a challenge for recommender systems to give high-quality outcomes to cold-start users. One potential solution to alleviate the data sparsity problem for cold-start users in the target domain is to add data from the auxiliary domain. Finding a proper way to extract knowledge from an auxiliary domain and transfer it into a target domain is one of the main objectives for cross-domain recommendation (CDR) research. Among the existing methods, mapping approach is a popular one to implement cross-domain recommendation models (CDRs). For models of this type, a mapping module plays the role of transforming data from one domain to another. It primarily determines the performance of mapping approach CDRs. Recently, diffusion probability models (DPMs) have achieved impressive success for image synthesis related tasks. They involve recovering images from noise-added samples, which can be viewed as a data transformation process with outstanding performance. To further enhance the performance of CDRs, we first reveal the potential connection between DPMs and mapping modules of CDRs, and then propose a novel CDR model named Diffusion Cross-domain Recommendation (DiffCDR). More specifically, we first adopt the theory of DPM and design a Diffusion Module (DIM), which generates user's embedding in target domain. To reduce the negative impact of randomness introduced in DIM and improve the stability, we employ an Alignment Module to produce the aligned user embeddings. In addition, we consider the label data of the target domain and form the task-oriented loss function, which enables our DiffCDR to adapt to specific tasks. By conducting extensive experiments on datasets collected from reality, we demonstrate the effectiveness and adaptability of DiffCDR to outperform baseline models on various CDR tasks in both cold-start and warm-start scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yuner Xuan (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub