Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Ontology-Based multi-domain model in Social Network Analysis: Experimental validation and case study (2402.02181v1)

Published 3 Feb 2024 in cs.SI and cs.AI

Abstract: The use of social network theory and methods of analysis have been applied to different domains in recent years, including public health. The complete procedure for carrying out a social network analysis (SNA) is a time-consuming task that entails a series of steps in which the expert in social network analysis could make mistakes. This research presents a multi-domain knowledge model capable of automatically gathering data and carrying out different social network analyses in different domains, without errors and obtaining the same conclusions that an expert in SNA would obtain. The model is represented in an ontology called OntoSNAQA, which is made up of classes, properties and rules representing the domains of People, Questionnaires and Social Network Analysis. Besides the ontology itself, different rules are represented by SWRL and SPARQL queries. A Knowledge Based System was created using OntoSNAQA and applied to a real case study in order to show the advantages of the approach. Finally, the results of an SNA analysis obtained through the model were compared to those obtained from some of the most widely used SNA applications: UCINET, Pajek, Cytoscape and Gephi, to test and confirm the validity of the model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (17)

Summary

We haven't generated a summary for this paper yet.