A Proof-theoretic Semantics for Intuitionistic Linear Logic (2402.01982v2)
Abstract: The approach taken by Gheorghiu, Gu and Pym in their paper on giving a Base-extension Semantics for Intuitionistic Multiplicative Linear Logic is an interesting adaptation of the work of Sandqvist for IPL to the substructural setting. What is particularly interesting is how naturally the move to the substructural setting provided a semantics for the multiplicative fragment of intuitionistic linear logic. Whilst ultimately the Gheorghiu, Gu and Pym used their foundations to provide a semantics for bunched implication logic, it begs the question, what of the rest of intuitionistic linear logic? In this paper, I present just such a semantics. This is particularly of interest as this logic has as a connective the bang, a modal connective. Capturing the inferentialist content of formulas marked with this connective is particularly challenging and a discussion is dedicated to this at the end of the paper.
- \bibcommenthead
- Ramanayake, R. & Urban, J. (eds) Proof-theoretic semantics for intuitionistic multiplicative linear logic. (eds Ramanayake, R. & Urban, J.) Automated Reasoning with Analytic Tableaux and Related Methods, 367–385 (Springer Nature Switzerland, Cham, 2023).
- Proof-theoretic semantics for the logic of bunched implications (2023). 2311.16719.
- Kürbis, N. Proof-theoretic semantics, a problem with negation and prospects for modality. Journal of Philosophical Logic 44, 713–727 (2015).
- Base-extension semantics for modal logic (2024). 2401.13597.
- Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110, 327–365 (1994). URL https://www.sciencedirect.com/science/article/pii/S0890540184710364.
- Sandqvist, T. Base-extension semantics for intuitionistic sentential logic. Log. J. IGPL 23, 719–731 (2015). URL https://api.semanticscholar.org/CorpusID:7310523.
- Schroeder-Heister, P. in Proof-Theoretic Semantics Fall 2023 edn, (eds Zalta, E. N. & Nodelman, U.) The Stanford Encyclopedia of Philosophy (Metaphysics Research Lab, Stanford University, 2023).
- Schroeder-Heister, P. Uniform proof-theoretic semantics for logical constants. Journal of Symbolic Logic 56, 1142 (1991).
- Piecha, T. Completeness in Proof-Theoretic Semantics, 231–251 (Springer International Publishing, Cham, 2016). URL https://doi.org/10.1007/978-3-319-22686-6_15.
- Sandqvist, T. Hypothesis-Discharging Rules in Atomic Bases, 313–328 (Springer International Publishing, Cham, 2015). URL https://doi.org/10.1007/978-3-319-11041-7_14.
- Sandqvist, T. An Inferentialist Interpretation of Classical Logic. Ph.D. thesis, Uppsala universitet (2005).
- Girard, J.-Y. Linear logic. Theoretical Computer Science 50, 1–101 (1987). URL https://www.sciencedirect.com/science/article/pii/0304397587900454.
- in Linear Logic Fall 2023 edn, (eds Zalta, E. N. & Nodelman, U.) The Stanford Encyclopedia of Philosophy (Metaphysics Research Lab, Stanford University, 2023).
- Bierman, G. On intuitionistic linear logic. Tech. Rep. UCAM-CL-TR-346, University of Cambridge, Computer Laboratory (1994). URL https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-346.pdf.
- Basic Proof Theory 2 edn. Cambridge Tracts in Theoretical Computer Science (Cambridge University Press, 2000).
- Girard, J.-Y. Linear Logic: its syntax and semantics, 1–42. London Mathematical Society Lecture Note Series (Cambridge University Press, 1995).
- Structural Proof Theory (Cambridge University Press, 2001).
- Bezem, M. & Groote, J. F. (eds) A term calculus for intuitionistic linear logic. (eds Bezem, M. & Groote, J. F.) Typed Lambda Calculi and Applications, 75–90 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993).
- Troelstra, A. Natural deduction for intuitionistic linear logic. Annals of Pure and Applied Logic 73, 79–108 (1995). URL https://www.sciencedirect.com/science/article/pii/0168007293E00783. A Tribute to Dirk van Dalen.
- Mints, G. Normal deduction in the intuitionistic linear logic. Archive for Mathematical Logic 37, 415–425 (1998). URL https://doi.org/10.1007/s001530050106.
- Negri, S. A normalizing system of natural deduction for intuitionistic linear logic. ARCHIVE FOR MATHEMATICAL LOGIC 41, 789–810 (2002).
- Wadler, P. Borzyszkowski, A. M. & Sokołowski, S. (eds) A taste of linear logic. (eds Borzyszkowski, A. M. & Sokołowski, S.) Mathematical Foundations of Computer Science 1993, 185–210 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993).
- Personal Communications.