Observation of nonlinear fractal higher-order topological insulator (2402.01979v1)
Abstract: Higher-order topological insulators (HOTIs) are unique materials hosting topologically protected states, whose dimensionality is at least by a factor of 2 lower than that of the bulk. Topological states in such insulators may be strongly confined in their corners that leads to considerable enhancement of nonlinear processes involving such states. However, all nonlinear HOTIs demonstrated so far were built on periodic bulk lattice materials. Here we demonstrate first \textit{nonlinear photonic} HOTI with the fractal origin. Despite their fractional effective dimensionality, the HOTIs constructed here on two different types of the Sierpi\'nski gasket waveguide arrays, may support topological corner states for unexpectedly wide range of coupling strengths, even in parameter regions where conventional HOTIs become trivial. We demonstrate thresholdless solitons bifurcating from corner states in nonlinear fractal HOTIs and show that their localization can be efficiently controlled by the input beam power. We observe sharp differences in nonlinear light localization on outer and multiple inner corners and edges representative for these fractal materials. Our findings not only represent a new paradigm for nonlinear topological insulators, but also open new avenues for potential applications of fractal materials to control the light flow.
- A. Bunde and S. Havlin, eds., Fractals in science, 1st ed. (Springer Berlin, 1994).
- Z.-G. Song, Y.-Y. Zhang, and S.-S. Li, “The topological insulator in a fractal space,” Appl. Phys. Lett. 104, 233106 (2014).
- J. He, Y. Liang, and S. p. Kou, “Topological hierarchy insulators and topological fractal insulators,” EPL 112, 17010 (2015).
- S. N. Kempkes, M. R. Slot, S. E. Freeney, S. J. M. Zevenhuizen, D. Vanmaekelbergh, I. Swart, and C. M. Smith, “Design and characterization of electrons in a fractal geometry,” Nat. Phys. 15, 127–131 (2019).
- S. Pai and A. Prem, “Topological states on fractal lattices,” Phys. Rev. B 100, 155135 (2019).
- A. A. Iliasov, M. I. Katsnelson, and S. Yuan, “Hall conductivity of a Sierpiński carpet,” Phys. Rev. B 101, 045413 (2020).
- M. Fremling, M. van Hooft, C. M. Smith, and L. Fritz, “Existence of robust edge currents in Sierpiński fractals,” Phys. Rev. Res. 2, 013044 (2020).
- X.-Y. Xu, X.-W. Wang, D.-Y. Chen, C. M. Smith, and X.-M. Jin, “Quantum transport in fractal networks,” Nat. Photon. 15, 703–710 (2021).
- C. Liu, Y. Zhou, G. Wang, Y. Yin, C. Li, H. Huang, D. Guan, Y. Li, S. Wang, H. Zheng, C. Liu, Y. Han, J. W. Evans, F. Liu, and J. Jia, “Sierpiński structure and electronic topology in Bi thin films on InSb(111)B surfaces,” Phys. Rev. Lett. 126, 176102 (2021).
- M. N. Ivaki, I. Sahlberg, K. Pöyhönen, and T. Ojanen, “Topological random fractals,” Commun. Phys. 5, 327 (2022).
- S. Manna, C. W. Duncan, C. A. Weidner, J. F. Sherson, and A. E. B. Nielsen, “Anyon braiding on a fractal lattice with a local Hamiltonian,” Phys. Rev. A 105, L021302 (2022).
- Z. Yang, E. Lustig, Y. Lumer, and M. Segev, “Photonic Floquet topological insulators in a fractal lattice,” Light Sci. Appl. 9, 128 (2020).
- T. Biesenthal, L. J. Maczewsky, Z. Yang, M. Kremer, M. Segev, A. Szameit, and M. Heinrich, “Fractal photonic topological insulators,” Science 376, 1114–1119 (2022).
- S. Zheng, X. Man, Z.-L. Kong, Z.-K. Lin, G. Duan, N. Chen, D. Yu, J.-H. Jiang, and B. Xia, “Observation of fractal higher-order topological states in acoustic metamaterials,” Sci. Bull. 67, 2069–2075 (2022).
- J. Li, Q. Mo, J.-H. Jiang, and Z. Yang, “Higher-order topological phase in an acoustic fractal lattice,” Sci. Bull. 67, 2040–2044 (2022).
- B. Ren, Y. V. Kartashov, L. J. Maczewsky, M. S. Kirsch, H. Wang, A. Szameit, M. Heinrich, and Y. Zhang, “Theory of nonlinear corner states in photonic fractal lattices,” Nanophoton. 12, 3829–3838 (2023a).
- Y. Xie, L. Song, W. Yan, S. Xia, L. Tang, D. Song, J.-W. Rhim, and Z. Chen, “Fractal-like photonic lattices and localized states arising from singular and nonsingular flatbands,” APL Photon. 6, 116104 (2021a).
- L. Song, Y. Xie, S. Xia, L. Tang, D. Song, J.-W. Rhim, and Z. Chen, “Topological flatband loop states in fractal-like photonic lattices,” Laser Photon. Rev. 17, 2200315 (2023).
- L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photon. 8, 821–829 (2014).
- T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
- Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
- M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
- J. Noh, S. Huang, K. P. Chen, and M. C. Rechtsman, “Observation of photonic topological valley Hall edge states,” Phys. Rev. Lett. 120, 063902 (2018a).
- C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl, “A quantized microwave quadrupole insulator with topologically protected corner states,” Nature 555, 346–350 (2018).
- S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, “Photonic quadrupole topological phases,” Nat. Photon. 13, 692–696 (2019).
- A. El Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz, and M. Bourennane, “Corner states of light in photonic waveguides,” Nat. Photon. 13, 697–700 (2019).
- B. Xie, H.-X. Wang, X. Zhang, P. Zhan, J.-H. Jiang, M. Lu, and Y. Chen, “Higher-order band topology,” Nat. Rev. Phys. 3, 520–532 (2021b).
- Z.-K. Lin, Q. Wang, Y. Liu, H. Xue, B. Zhang, Y. Chong, and J.-H. Jiang, “Topological phenomena at defects in acoustic, photonic and solid-state lattices,” Nat. Rev. Phys. 5, 483–495 (2023).
- J. Li, Y. Sun, Q. Mo, Z. Ruan, and Z. Yang, “Fractality-induced topological phase squeezing and devil’s staircase,” Phys. Rev. Res. 5, 023189 (2023).
- Y. Hatsugai, “Chern number and edge states in the integer quantum Hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993).
- S. Manna, S. Nandy, and B. Roy, “Higher-order topological phases on fractal lattices,” Phys. Rev. B 105, L201301 (2022).
- M. Brzezińska, A. M. Cook, and T. Neupert, “Topology in the Sierpiński-Hofstadter problem,” Phys. Rev. B 98, 205116 (2018).
- D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, “Nonlinear topological photonics,” Appl. Phys. Rev. 7, 021306 (2020).
- Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, “Self-localized states in photonic topological insulators,” Phys. Rev. Lett. 111, 243905 (2013).
- M. J. Ablowitz, C. W. Curtis, and Y.-P. Ma, “Linear and nonlinear traveling edge waves in optical honeycomb lattices,” Phys. Rev. A 90, 023813 (2014).
- D. Leykam and Y. D. Chong, “Edge solitons in nonlinear-photonic topological insulators,” Phys. Rev. Lett. 117, 143901 (2016).
- Y. V. Kartashov and D. V. Skryabin, “Modulational instability and solitary waves in polariton topological insulators,” Optica 3, 1228–1236 (2016).
- M. J. Ablowitz and J. T. Cole, “Tight-binding methods for general longitudinally driven photonic lattices: Edge states and solitons,” Phys. Rev. A 96, 043868 (2017).
- S. K. Ivanov, Y. V. Kartashov, A. Szameit, L. Torner, and V. V. Konotop, “Vector topological edge solitons in Floquet insulators,” ACS Photon. 7, 735–745 (2020).
- H. Zhong, S. Xia, Y. Zhang, Y. Li, D. Song, C. Liu, and Z. Chen, “Nonlinear topological valley Hall edge states arising from type-II Dirac cones,” Adv. Photon. 3, 056001 (2021).
- S. Mukherjee and M. C. Rechtsman, “Observation of Floquet solitons in a topological bandgap,” Science 368, 856–859 (2020).
- S. Mukherjee and M. C. Rechtsman, “Observation of unidirectional solitonlike edge states in nonlinear Floquet topological insulators,” Phys. Rev. X 11, 041057 (2021).
- M. Guo, S. Xia, N. Wang, D. Song, Z. Chen, and J. Yang, “Weakly nonlinear topological gap solitons in Su-Schrieffer-Heeger photonic lattices,” Opt. Lett. 45, 6466–6469 (2020).
- Y. V. Kartashov, A. A. Arkhipova, S. A. Zhuravitskii, N. N. Skryabin, I. V. Dyakonov, A. A. Kalinkin, S. P. Kulik, V. O. Kompanets, S. V. Chekalin, L. Torner, and V. N. Zadkov, “Observation of edge solitons in topological trimer arrays,” Phys. Rev. Lett. 128, 093901 (2022).
- F. Zangeneh-Nejad and R. Fleury, “Nonlinear second-order topological insulators,” Phys. Rev. Lett. 123, 053902 (2019).
- L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, and A. Szameit, “Nonlinearity-induced photonic topological insulator,” Science 370, 701–704 (2020).
- M. S. Kirsch, Y. Zhang, M. Kremer, L. J. Maczewsky, S. K. Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, and M. Heinrich, “Nonlinear second-order photonic topological insulators,” Nat. Phys. 17, 995–1000 (2021).
- Z. Hu, D. Bongiovanni, D. Jukić, E. Jajtić, S. Xia, D. Song, J. Xu, R. Morandotti, H. Buljan, and Z. Chen, “Nonlinear control of photonic higher-order topological bound states in the continuum,” Light Sci. Appl. 10, 164 (2021).
- A. A. Arkhipova, Y. Zhang, Y. V. Kartashov, S. A. Zhuravitskii, N. N. Skryabin, I. V. Dyakonov, A. A. Kalinkin, S. P. Kulik, V. O. Kompanets, S. V. Chekalin, and V. N. Zadkov, “Observation of π𝜋\piitalic_π solitons in oscillating waveguide arrays,” Sci. Bull. 68, 2017–2024 (2023).
- B. Ren, A. A. Arkhipova, Y. Zhang, Y. V. Kartashov, H. Wang, S. A. Zhuravitskii, N. N. Skryabin, I. V. Dyakonov, A. A. Kalinkin, S. P. Kulik, V. O. Kompanets, S. V. Chekalin, and V. N. Zadkov, “Observation of nonlinear disclination states,” Light Sci. Appl. 12, 194 (2023b).
- W. A. Wheeler, L. K. Wagner, and T. L. Hughes, “Many-body electric multipole operators in extended systems,” Phys. Rev. B 100, 245135 (2019).
- B. Kang, K. Shiozaki, and G. Y. Cho, “Many-body order parameters for multipoles in solids,” Phys. Rev. B 100, 245134 (2019).