Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hom $ω$-categories of a computad are free (2402.01611v3)

Published 2 Feb 2024 in math.CT and cs.LO

Abstract: We provide a new description of the hom functor on weak $\omega$-categories, and we show that it admits a left adjoint that we call the suspension functor. We then show that the hom functor preserves the property of being free on a computad, in contrast to the hom functor for strict $\omega$-categories. Using the same technique, we define the opposite of an $\omega$-category with respect to a set of dimensions, and we show that this construction also preserves the property of being free on a computad. Finally, we show that the constructions of opposites and homs commute.

Summary

We haven't generated a summary for this paper yet.