Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combinatorics of rectangulations: Old and new bijections (2402.01483v1)

Published 2 Feb 2024 in math.CO, cs.CG, and cs.DM

Abstract: A rectangulation is a decomposition of a rectangle into finitely many rectangles. Via natural equivalence relations, rectangulations can be seen as combinatorial objects with a rich structure, with links to lattice congruences, flip graphs, polytopes, lattice paths, Hopf algebras, etc. In this paper, we first revisit the structure of the respective equivalence classes: weak rectangulations that preserve rectangle-segment adjacencies, and strong rectangulations that preserve rectangle-rectangle adjacencies. We thoroughly investigate posets defined by adjacency in rectangulations of both kinds, and unify and simplify known bijections between rectangulations and permutation classes. This yields a uniform treatment of mappings between permutations and rectangulations that unifies the results from earlier contributions, and emphasizes parallelism and differences between the weak and the strong cases. Then, we consider the special case of guillotine rectangulations, and prove that they can be characterized - under all known mappings between permutations and rectangulations - by avoidance of two mesh patterns that correspond to "windmills" in rectangulations. This yields new permutation classes in bijection with weak guillotine rectangulations, and the first known permutation class in bijection with strong guillotine rectangulations. Finally, we address enumerative issues and prove asymptotic bounds for several families of strong rectangulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. Michio Abe. Covering the square by squares without overlapping. J. Japan Math. Phys., 4:359–366, 1930.
  2. Michio Abe. On the problem to cover simply and without gap the inside of a square with a finite number of squares which are all different from one another. Proc. Phys.-Math. Soc. Japan, 14:385–387, 1932.
  3. A bijection between permutations and floorplans, and its applications. Discret. Appl. Math., 154(12):1674–1684, 2006.
  4. The number of guillotine partitions in d dimensions. Inf. Process. Lett., 98(4):162–167, 2006.
  5. From geometry to generating functions: rectangulations and permutations. arXiv:2401.05558.
  6. Orders induced by segments in floorplans and (2–14–3, 3–41–2)-avoiding permutations. Electron. J. Comb., 20(2):35, 2013.
  7. Separable d𝑑ditalic_d-permutations and guillotine partitions. Annals of Combinatorics, 14:17–43, 2010.
  8. Partial orders of dimension 2222. Networks, 2(1):11–28, 1972.
  9. Glen Baxter. On fixed points of the composite of commuting functions. Proc. AMS, 15(6):851–855, 1964.
  10. On permutations induced by commuting functions, and an embedding question. Math. Scandin., 13:140–150, 1963.
  11. Partitioning a square into rectangles: NP-completeness and approximation algorithms. Algorithmica, 34(3):217–239, 2002.
  12. Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Trans. Graph., 21(4):833–854, 2002.
  13. David Bevan. Permutation patterns: basic definitions and notation, 2015. arXiv:1506.06673.
  14. Permutation statistics and linear extensions of posets. J. Comb. Theory, Ser. A, 58(1):85–114, 1991.
  15. Baxter permutations and plane bipolar orientations. Séminaire Lotharingien de Combinatoire, 61:B61Ah, 2010.
  16. Pattern matching for permutations. Inf. Process. Lett., 65(5):277–283, 1998.
  17. Non-D-finite excursions in the quarter plane. J. Comb. Theory, Ser. A, 121:45–63, 2014.
  18. Mireille Bousquet-Mélou. Four classes of pattern-avoiding permutations under one roof: Generating trees with two labels. The Electron. J. Comb., 9(2):R19, 2003.
  19. Semi-Baxter and Strong-Baxter: Two Relatives of the Baxter Sequence. SIAM J. Discret. Math., 32(4):2795–2819, 2018.
  20. Avoiding Baxter-like patterns. The 17th Conference on Permutation Patterns, June 2019, Zürich, Switzerland.
  21. Mesh patterns and the expansion of permutation statistics as sums of permutation patterns. Electron. J. Comb., 18(2), 2011.
  22. The dissection of rectangles into squares. Duke Math. J., 7:312–340, 1940.
  23. Evolution strategies for optimizing rectangular cartograms. In Ningchuan Xiao, Mei-Po Kwan, Michael F. Goodchild, and Shashi Shekhar, editors, Proc. GIScience 2012, volume 7478 of LNCS, pages 29–42. Springer, 2012.
  24. Tableau sequences, open diagrams, and Baxter families. Europ. J. Comb., 58:144–165, 2016.
  25. Optimal rectangular partitions. Networks, 41(1):51–67, 2003.
  26. A note on flips in diagonal rectangulations. Discret. Math. Theor. Comput. Sci., 20(2), 2018.
  27. Many non-equivalent realizations of the associahedron. Comb., 35(5):513–551, 2015.
  28. Chapter 10 — Floorplanning. In Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting (Tim) Cheng, editors, Electronic Design Automation, pages 575–634. Morgan Kaufmann, 2009.
  29. The number of Baxter permutations. J. Comb. Theory, Ser. A, 24:382–394, 1978.
  30. On the number of tilings of a square by rectangles. Annals of Comb., 18:21–34, 2014.
  31. Bipolar orientations revisited. Discret. Appl. Math., 56(2-3):157–179, 1995.
  32. Random walks in cones. Annals of Prob., 43(3):992–1044, 2015.
  33. Blanche Descartes. Division of a square into rectangles. Eureka, (34):31–35, 1971.
  34. A bijection between rooted planar maps and generalized fighting fish. arXiv:2210.16635, 2022.
  35. A combinatorial proof of J. West’s conjecture. Discret. Math., 187(1-3):71–96, 1998.
  36. Permutations with forbidden subsequences and nonseparable planar maps. Discret. Math., 153(1-3):85–103, 1996.
  37. T-structures, T-functions, and texts. Theor. Comput. Sci., 116(2):227–290, 1993.
  38. Area-universal and constrained rectangular layouts. SIAM J. Comput., 41(3):537–564, 2012.
  39. Wenjie Fang. Fighting Fish and Two-Stack Sortable Permutations. Séminaire Lotharingien de Combinatoire, 80B:P7, 2018. Proceedings of the 30th International Conference on “Formal Power Series and Algebraic Combinatorics", July 16 - 20, 2018, Dartmouth College, Hanover, USA.
  40. Stefan Felsner. Lattice structures from planar graphs. Electron. J. Comb., 11(1), 2004.
  41. Bijections for Baxter families and related objects. J. Comb. Theory, Ser. A, 118(3):993–1020, 2011.
  42. Markov chains for linear extensions, the two-dimensional case. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 239–247. ACM/SIAM, 1997.
  43. Analytic Combinatorics. Cambridge University Press, 2009.
  44. Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d’Euler et nombres de Genocchi. Discret. Math., 28(1):21–35, 1979.
  45. An asymptotic estimate of the numbers of rectangular drawings or floorplans. In International Symposium on Circuits and Systems (ISCAS 2009), 24-17 May 2009, Taipei, Taiwan, pages 856–859. IEEE, 2009.
  46. A surjective mapping from permutations to room-to-room floorplans. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 90-A(4):823–828, 2007.
  47. Éric Fusy. Transversal structures on triangulations: A combinatorial study and straight-line drawings. Discret. Math., 309(7):1870–1894, 2009.
  48. Enumeration of corner polyhedra and 3-connected Schnyder labelings. Electron. J. Comb., 30(2), 2023.
  49. On the enumeration of plane bipolar posets and transversal structures. Europ. J. Combin., 116:103870, 2024.
  50. Hamiltonian cycles on random Eulerian triangulations. Nuclear Phys. B, 546(3):731–750, 1999.
  51. Counting rectangular drawings or floorplans in polynomial time. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 92-A(4):1115–1120, 2009.
  52. Bipolar orientations on planar maps and SLE12subscriptSLE12\mathrm{SLE}_{12}roman_SLE start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT. Annals of Prob., 47(3):1240–1269, 2019.
  53. The Hopf algebra of diagonal rectangulations. J. Comb. Theory, Ser. A, 119(3):788–824, 2012.
  54. Jean-Louis Loday. Realization of the Stasheff polytope. Archiv d. Math., 83(3):267–278, 2004.
  55. Colin L. Mallows. Baxter permutations rise again. Journal of Combinatorial Theory, Series A, 27(3):394–396, 1979.
  56. Emily Meehan. Baxter posets. Electon. J. Comb., 26(3):3, 2019.
  57. Emily Meehan. The Hopf algebra of generic rectangulations. arXiv:1903.09874, 2019.
  58. Personal communication, 2021.
  59. Combinatorial generation via permutation languages. III. Rectangulations. Discrete Comput. Geom., 70(1):51–122, 2023.
  60. Associahedra, Tamari Lattices and Related Structures. Progress in Mathematics. Birkhäuser, 2012.
  61. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org/.
  62. Quotientopes. Bull. London Math. Soc., 51(3):406–420, 2019.
  63. Lionel Pournin. The diameter of associahedra. Adv. Math., 259:13–42, 2014.
  64. James Propp. Lattice structure for orientations of graphs. arXiv:math/0209005, 1993.
  65. Nathan Reading. Lattice congruences of the weak order. Order, 21(4):315–344, 2004.
  66. Nathan Reading. Generic rectangulations. Europ. J. Comb., 33(4):610–623, 2012.
  67. VLSI physical design automation: Theory and practice. IEEE, 1995.
  68. Gilles Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Bordeaux 1, 1998.
  69. Ernst Schröder. Vier combinatorische Probleme. Zeitschrift für Mathematik und Physik, Band 15:361–376, 1870.
  70. Zion Cien Shen and Chris C. N. Chu. Bounds on the number of slicing, mosaic, and general floorplans. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 22(10):1354–1361, 2003.
  71. Naveed A. Sherwani. Algorithms for VLSI physical design automation. Kluwer, 1993.
  72. Rotation distance, triangulations, and hyperbolic geometry. J. Amer. Math. Soc., 1(3):647–681, 1988.
  73. Richard P. Stanley. Hipparchus, Plutarch, Schröder, and Hough. The American Mathematical Monthly, 104(4):344–350, 1997.
  74. Richard P. Stanley. Catalan Numbers. Cambridge University Press, 2015.
  75. James Dillon Stasheff. Homotopy associativity of H𝐻Hitalic_H-spaces. I, II. Trans. Amer. Math. Soc., 108:293–312, 1963. 108 (1963), 275-292; ibid.
  76. John Philip Steadman. Architectural Morphology. Pion, 1983.
  77. Fujimaki–Takahashi squeeze: Linear time construction of constraint graphs of floorplan for a given permutation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 91-A(4):1071–1076, 2008.
  78. A (4⁢n−4)4𝑛4(4n-4)( 4 italic_n - 4 )-bit representation of a rectangular drawing or floorplan. In Hung Q. Ngo, editor, Proc. COCOON 2009, volume 5609 of LNCS, pages 47–55. Springer, 2009.
  79. Dov Tamari. Monoïdes préordonnés et chaînes de Malcev. Université de Paris, Paris, 1951. Thèse.
  80. William Thomas Tutte. A census of planar triangulations. Canadian J. Math., 14:21–38, 1962.
  81. William Thomas Tutte. A census of planar maps. Canadian J. Math., 15:249–271, 1963.
  82. Marc J. van Kreveld and Bettina Speckmann. On rectangular cartograms. Comput. Geom., 37(3):175–187, 2007.
  83. Gérard Viennot. A bijective proof for the number of Baxter permutations. Séminaire Lotharingien de Combinatoire, 1-3:28–29, 1981.
  84. Julian West. Generating trees and the Catalan and Schröder numbers. Discret. Math., 146(1-3):247–262, 1995.
  85. Floorplan representations: Complexity and connections. ACM Trans. Design Autom. Electron. Syst., 8(1):55–80, 2003.
  86. Doron Zeilberger. A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length n𝑛nitalic_n is 2⁢(3⁢n)!/((n+1)!⁢(2⁢n+1)!)23𝑛𝑛12𝑛12(3n)!/((n+1)!(2n+1)!)2 ( 3 italic_n ) ! / ( ( italic_n + 1 ) ! ( 2 italic_n + 1 ) ! ). Discret. Math., 102(1):85–93, 1992.
Citations (2)

Summary

We haven't generated a summary for this paper yet.