Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LIR: A Lightweight Baseline for Image Restoration (2402.01368v3)

Published 2 Feb 2024 in cs.CV

Abstract: Recently, there have been significant advancements in Image Restoration based on CNN and transformer. However, the inherent characteristics of the Image Restoration task are often overlooked in many works. They, instead, tend to focus on the basic block design and stack numerous such blocks to the model, leading to parameters redundant and computations unnecessary. Thus, the efficiency of the image restoration is hindered. In this paper, we propose a Lightweight Baseline network for Image Restoration called LIR to efficiently restore the image and remove degradations. First of all, through an ingenious structural design, LIR removes the degradations existing in the local and global residual connections that are ignored by modern networks. Then, a Lightweight Adaptive Attention (LAA) Block is introduced which is mainly composed of proposed Adaptive Filters and Attention Blocks. The proposed Adaptive Filter is used to adaptively extract high-frequency information and enhance object contours in various IR tasks, and Attention Block involves a novel Patch Attention module to approximate the self-attention part of the transformer. On the deraining task, our LIR achieves the state-of-the-art Structure Similarity Index Measure (SSIM) and comparable performance to state-of-the-art models on Peak Signal-to-Noise Ratio (PSNR). For denoising, dehazing, and deblurring tasks, LIR also achieves a comparable performance to state-of-the-art models with a parameter size of about 30\%. In addition, it is worth noting that our LIR produces better visual results that are more in line with the human aesthetic.

Summary

We haven't generated a summary for this paper yet.