LimSim++: A Closed-Loop Platform for Deploying Multimodal LLMs in Autonomous Driving (2402.01246v2)
Abstract: The emergence of Multimodal LLMs ((M)LLMs) has ushered in new avenues in artificial intelligence, particularly for autonomous driving by offering enhanced understanding and reasoning capabilities. This paper introduces LimSim++, an extended version of LimSim designed for the application of (M)LLMs in autonomous driving. Acknowledging the limitations of existing simulation platforms, LimSim++ addresses the need for a long-term closed-loop infrastructure supporting continuous learning and improved generalization in autonomous driving. The platform offers extended-duration, multi-scenario simulations, providing crucial information for (M)LLM-driven vehicles. Users can engage in prompt engineering, model evaluation, and framework enhancement, making LimSim++ a versatile tool for research and practice. This paper additionally introduces a baseline (M)LLM-driven framework, systematically validated through quantitative experiments across diverse scenarios. The open-source resources of LimSim++ are available at: https://pjlab-adg.github.io/limsim-plus/.
- OpenAI, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
- H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
- A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “PaLM: Scaling language modeling with pathways,” Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.
- OpenAI, “GPT-4V(ision) system card,” https://openai.com/research/gpt-4v-system-card, 2023.
- X. Li, Y. Bai, P. Cai, L. Wen, D. Fu, B. Zhang, X. Yang, X. Cai, T. Ma, J. Guo, X. Gao, M. Dou, B. Shi, Y. Liu, L. He, and Y. Qiao, “Towards knowledge-driven autonomous driving,” arXiv preprint arXiv:2312.04316, 2023.
- C. Cui, Y. Ma, X. Cao, W. Ye, Y. Zhou, K. Liang, J. Chen, J. Lu, Z. Yang, K.-D. Liao et al., “A survey on multimodal large language models for autonomous driving,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 958–979.
- Y. Huang, Y. Chen, and Z. Li, “Applications of large scale foundation models for autonomous driving,” arXiv preprint arXiv:2311.12144, 2023.
- L. Wen, D. Fu, X. Li, X. Cai, T. Ma, P. Cai, M. Dou, B. Shi, L. He, and Y. Qiao, “Dilu: A knowledge-driven approach to autonomous driving with large language models,” arXiv preprint arXiv:2309.16292, 2023.
- S. Sharan, F. Pittaluga, M. Chandraker et al., “Llm-assist: Enhancing closed-loop planning with language-based reasoning,” arXiv preprint arXiv:2401.00125, 2023.
- W. Wang, J. Xie, C. Hu, H. Zou, J. Fan, W. Tong, Y. Wen, S. Wu, H. Deng, Z. Li et al., “DriveMLM: Aligning multi-modal large language models with behavioral planning states for autonomous driving,” arXiv preprint arXiv:2312.09245, 2023.
- Y. Jin, X. Shen, H. Peng, X. Liu, J. Qin, J. Li, J. Xie, P. Gao, G. Zhou, and J. Gong, “SurrealDriver: Designing generative driver agent simulation framework in urban contexts based on large language model,” arXiv preprint arXiv:2309.13193, 2023.
- Y. Ma, C. Cui, X. Cao, W. Ye, P. Liu, J. Lu, A. Abdelraouf, R. Gupta, K. Han, A. Bera et al., “LaMPilot: An open benchmark dataset for autonomous driving with language model programs,” arXiv preprint arXiv:2312.04372, 2023.
- E. Leurent, “An environment for autonomous driving decision-making,” https://github.com/eleurent/highway-env, 2018.
- A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in Conference on Robot Learning. PMLR, 2017, pp. 1–16.
- H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang, L. Fletcher, O. Beijbom, and S. Omari, “NuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles,” arXiv preprint arXiv:2106.11810, 2021.
- D. Fu, X. Li, L. Wen, M. Dou, P. Cai, B. Shi, and Y. Qiao, “Drive like a human: Rethinking autonomous driving with large language models,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 910–919.
- H. Shao, Y. Hu, L. Wang, S. L. Waslander, Y. Liu, and H. Li, “LMDrive: Closed-loop end-to-end driving with large language models,” arXiv preprint arXiv:2312.07488, 2023.
- L. Wen, D. Fu, S. Mao, P. Cai, M. Dou, and Y. Li, “LimSim: A long-term interactive multi-scenario traffic simulator,” arXiv preprint arXiv:2307.06648, 2023.
- C. Cui, Y. Ma, X. Cao, W. Ye, and Z. Wang, “Drive as you speak: Enabling human-like interaction with large language models in autonomous vehicles,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 902–909.
- C. Cui, Z. Yang, Y. Zhou, Y. Ma, J. Lu, and Z. Wang, “Large language models for autonomous driving: Real-world experiments,” arXiv preprint arXiv:2312.09397, 2023.
- H. Sha, Y. Mu, Y. Jiang, L. Chen, C. Xu, P. Luo, S. E. Li, M. Tomizuka, W. Zhan, and M. Ding, “LanguageMPC: Large language models as decision makers for autonomous driving,” arXiv preprint arXiv:2310.03026, 2023.
- J. Mao, Y. Qian, H. Zhao, and Y. Wang, “GPT-Driver: Learning to drive with GPT,” arXiv preprint arXiv:2310.01415, 2023.
- L. Wen, X. Yang, D. Fu, X. Wang, P. Cai, X. Li, T. Ma, Y. Li, L. Xu, D. Shang et al., “On the road with GPT-4V (ision): Early explorations of visual-language model on autonomous driving,” arXiv preprint arXiv:2311.05332, 2023.
- W. Han, D. Guo, C.-Z. Xu, and J. Shen, “DME-Driver: Integrating human decision logic and 3D scene perception in autonomous driving,” arXiv preprint arXiv:2401.03641, 2024.
- H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” arXiv preprint arXiv:2304.08485, 2023.
- Y. Ma, Y. Cao, J. Sun, M. Pavone, and C. Xiao, “Dolphins: Multimodal language model for driving,” arXiv preprint arXiv:2312.00438, 2023.
- V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko, “Toward driving scene understanding: A dataset for learning driver behavior and causal reasoning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7699–7707.
- H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal dataset for autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 621–11 631.
- J. Kim, T. Misu, Y.-T. Chen, A. Tawari, and J. Canny, “Grounding human-to-vehicle advice for self-driving vehicles,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 591–10 599.
- D. Wu, W. Han, T. Wang, Y. Liu, X. Zhang, and J. Shen, “Language prompt for autonomous driving,” arXiv preprint arXiv:2309.04379, 2023.
- L. Chen, O. Sinavski, J. Hünermann, A. Karnsund, A. J. Willmott, D. Birch, D. Maund, and J. Shotton, “Driving with LLMs: Fusing object-level vector modality for explainable autonomous driving,” arXiv preprint arXiv:2310.01957, 2023.
- T. Qian, J. Chen, L. Zhuo, Y. Jiao, and Y.-G. Jiang, “Nuscenes-qa: A multi-modal visual question answering benchmark for autonomous driving scenario,” arXiv preprint arXiv:2305.14836, 2023.
- C. Sima, K. Renz, K. Chitta, L. Chen, H. Zhang, C. Xie, P. Luo, A. Geiger, and H. Li, “DriveLM: Driving with graph visual question answering,” arXiv preprint arXiv:2312.14150, 2023.
- B. Yu, C. Chen, J. Tang, S. Liu, and J.-L. Gaudiot, “Autonomous vehicles digital twin: A practical paradigm for autonomous driving system development,” Computer, vol. 55, no. 9, pp. 26–34, 2022.
- L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, “End-to-end autonomous driving: Challenges and frontiers,” arXiv preprint arXiv:2306.16927, 2023.
- Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun, “UniSim: A neural closed-loop sensor simulator,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1389–1399.
- I. Bae, J. Moon, J. Jhung, H. Suk, T. Kim, H. Park, J. Cha, J. Kim, D. Kim, and S. Kim, “Self-driving like a human driver instead of a robocar: Personalized comfortable driving experience for autonomous vehicles,” arXiv preprint arXiv:2001.03908, 2020.
- Y. Wang, J. He, L. Fan, H. Li, Y. Chen, and Z. Zhang, “Driving into the future: Multiview visual forecasting and planning with world model for autonomous driving,” arXiv preprint arXiv:2311.17918, 2023.