Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Solitons in Su-Schrieffer-Heeger Chain with periodic hopping modulation, domain walls and disorder (2402.01236v2)

Published 2 Feb 2024 in cond-mat.str-el and quant-ph

Abstract: A chiral symmetric Su-Schrieffer-Heeger (SSH) chain features topological end states in one of its dimerized configurations. Those mid-gap zero energy states show interesting modifications upon a periodic tuning of the hopping modulations. Besides, more and more in-gap end modes appear at nonzero energies for further partitioning of the Brillouin zone (BZ) due to increased hopping periodicity. The new topological phases are identified with a detailed analysis of the topological invariants namely, winding number and Zak phases. The spectra and topology of these systems with periodically modulated hopping are studied also in the presence of a single static domain wall, separating two topologically inequivalent dimerized structures. The domain wall causes additional in-gap modes in the spectrum as well as zero energy domain wall solitonic states for specific hopping periodicities. We also study the effect of disorder, particularly the chirality breaking onsite ones, on the edge and domain wall states. Other than the SSH type we also consider random, Rice-Mele or AI type disorder to do a comparative analysis of the evolution of chirality and zero energy states as the strength of disorder and hopping periodicity is varied. Our findings can add important feedback in utilizing topological phases in various fields including quantum computations while the results can be easily verified in a cold atom set up within optical lattices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. F. Wilczek, Nat. Phys. 5 (2009) 614.
  2. R. Heyrovska, arXiv:0804.4086 (2008).
  3. L. Salem, “The Molecular Orbital Theory of Conjugated Systems”, pp. 516-523 (W. A. Benjamin, NY, 1966).
  4. W. P. Su, J. R. Schrieffer, and A. J. Heeger. “Soliton excitations in polyacetylene”. Physical Review B 22, 2099 (1980).
  5. S.-R. Eric Yang, arXiv:1906.07896v1 [cond-mat.mes-hall].
  6. Ref.[12] is over-ambitious in calling the zero energy modes of SSH like chain as Majorana modes. In fact, pair of Majorana modes of different flavor localized at each end superpose to yield electronic end modes there.
  7. Felippo M D’Angelis, Felipe A Pinheiro, David Guéry-Odelin, Stefano Longhi, and François Impens. “Fast and robust quantum state transfer in a topological Su-Schrieffer-Heeger chain with next-to-nearest-neighbor interactions”. Physical Review Research 2, 033475 (2020).
  8. F. Munoz, Fernanda Pinilla, J. Mella, and Mario I. Molina. “Topological properties of a bipartite lattice of domain wall states”. Scientific Reports8, 1–9 (2018).
  9. Stefano Longhi. “Topological pumping of edge states via adiabatic passage”. Physical Review B 99, 155150 (2019).
  10. Lu Qi, Yu Yan, Yan Xing, Xue Dong Zhao, Shutian Liu, Wen Xue Cui, Xue Han, Shou Zhang, and Hong Fu Wang. “Topological router induced via long-range hopping in a SuSchrieffer-Heeger chain”. Physical Review Research 3, 023037 (2021).
  11. Altland, Alexander; Zirnbauer, Martin R. (1997), “Novel Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures”, Physical Review B. 55 (2).
  12. Wang Z and Zhang S C, Phys. Rev. X 4 011006 (2014).
  13. Yan He and Chih-Chun Chien, J. Phys.: Condens. Matter 33 085501 (2021).
  14. Margaret McIntyre and Grant Cairns. “A new formula for winding number”, In: Geometriae Dedicata 46.2 (1993), pp. 149–159.
  15. TO Puel, PD Sacramento, and MA Continentino. “Effect of hybridization symmetry on topological phases of odd-parity multiband superconductors”, In: arXiv preprint arXiv:1601.07609 (2016).
  16. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators”, Rev. Mod. Phys. 82, 3045(2010).
  17. A zero in the form am⁢(z−z0)msubscript𝑎𝑚superscript𝑧subscript𝑧0𝑚a_{m}(z-z_{0})^{m}italic_a start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( italic_z - italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT has a multiplicity m𝑚mitalic_m and a pole in the form an=1(z−z0)nsubscript𝑎𝑛1superscript𝑧subscript𝑧0𝑛a_{n}=\frac{1}{(z-z_{0})^{n}}italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG ( italic_z - italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG has a order n𝑛nitalic_n.
  18. N. Sedlmayr, P. Jaeger, M. Maiti, and J. Sirker, “Bulk-boundary correspondence for dynamical phase transitions in one-dimensional topological insulators and superconductors”, Physical Review B 97, 064304 (2018).
  19. R. Koch and J. C. Budich, “Bulk-boundary correspondence in non-Hermitian systems: stability analysis for generalized boundary conditions”, The European Physical Journal D 74, 1 (2020).
  20. K. Yokomizo and S. Murakami, “Non-Bloch band theory of non-Hermitian systems”, Physical Review Letters 123, 066404 (2019).
  21. Y. Xiong, “Why does bulk boundary correspondence fail in some non-Hermitian topological models”, Journal of Physics Communications 2, 035043 (2018).
  22. A. Anastasiadis, G. Styliaris, R. Chaunsali, G. Theocharis, and F. K. Diakonos, “Bulk-edge correspondence in the trimer Su-Schrieffer-Heeger model”, Physical Review B 106, 085109 (2022).
  23. Li, C.; A.E. Miroshnichenko, “Extended SSH Model: Non-Local Couplings and Non-Monotonous Edge States”, Physics 2019, 1, 2-16.
  24. Ze-Sheng Xu et. al, arXiv:2307.05207 [cond-mat.dis-nn].
  25. Sang-Hoon Han e⁢t.a⁢l.formulae-sequence𝑒𝑡𝑎𝑙et.~{}al.italic_e italic_t . italic_a italic_l ., arXiv:2311.08771 [cond-mat.mes-hall].
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com