Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Danger Of Arrogance: Welfare Equilibra As A Solution To Stackelberg Self-Play In Non-Coincidental Games (2402.01088v2)

Published 2 Feb 2024 in cs.GT and cs.MA

Abstract: The increasing prevalence of multi-agent learning systems in society necessitates understanding how to learn effective and safe policies in general-sum multi-agent environments against a variety of opponents, including self-play. General-sum learning is difficult because of non-stationary opponents and misaligned incentives. Our first main contribution is to show that many recent approaches to general-sum learning can be derived as approximations to Stackelberg strategies, which suggests a framework for developing new multi-agent learning algorithms. We then define non-coincidental games as games in which the Stackelberg strategy profile is not a Nash Equilibrium. This notably includes several canonical matrix games and provides a normative theory for why existing algorithms fail in self-play in such games. We address this problem by introducing Welfare Equilibria (WE) as a generalisation of Stackelberg Strategies, which can recover desirable Nash Equilibria even in non-coincidental games. Finally, we introduce Welfare Function Search (WelFuSe) as a practical approach to finding desirable WE against unknown opponents, which finds more mutually desirable solutions in self-play, while preserving performance against naive learning opponents.

Summary

We haven't generated a summary for this paper yet.