On the rationalization of the $K(n)$-local sphere (2402.00960v1)
Abstract: We compute the rational homotopy groups of the $K(n)$-local sphere for all heights $n$ and all primes $p$, verifying a prediction that goes back to the pioneering work of Morava in the early 1970s. More precisely, we show that the inclusion of the Witt vectors into the Lubin-Tate ring induces a split injection on continuous stabilizer cohomology with torsion cokernel of bounded exponent, thereby proving Hopkins' chromatic splitting conjecture and the vanishing conjecture of Beaudry-Goerss-Henn rationally. The key ingredients are the equivalence between the Lubin-Tate tower and the Drinfeld tower due to Faltings and Scholze-Weinstein, integral $p$-adic Hodge theory, and an integral refinement of a theorem of Tate on the Galois cohomology of non-archimedean fields.