The Fragile Nature of Road Transportation Systems (2402.00924v4)
Abstract: Major cities worldwide experience problems with the performance of their road transportation systems, and the continuous increase in traffic demand presents a substantial challenge to the optimal operation of urban road networks and the efficiency of traffic control strategies. The operation of transportation systems is widely considered to display fragile property, i.e., the loss in performance increases exponentially with the linearly increasing magnitude of disruptions. Meanwhile, the risk engineering community is embracing the novel concept of antifragility, enabling systems to learn from historical disruptions and exhibit improved performance under black swan events. In this study, based on established traffic models, namely fundamental diagrams and macroscopic fundamental diagrams, we first conducted a rigorous mathematical analysis to prove the fragile nature of the systems theoretically. Subsequently, we propose a skewness-based indicator that can be readily applied to cross-compare the degree of fragility for different networks solely dependent on the MFD-related parameters. At last, by taking real-world stochasticity into account, we implemented a numerical simulation with realistic network data to bridge the gap between the theoretical proof and the real-world operations, to reflect the potential impact of uncertainty on the fragility of the systems. This work aims to demonstrate the fragile nature of road transportation systems and help researchers better comprehend the necessity to consider explicitly antifragile design for future traffic control strategies.
- A functional form with a physical meaning for the macroscopic fundamental diagram. Transportation Research Part B: Methodological 137, 119–132. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261517310123, doi:10.1016/j.trb.2018.10.013.
- Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year. Transportation Research Part C: Emerging Technologies 126, 103065. URL: https://www.sciencedirect.com/science/article/pii/S0968090X21000917, doi:10.1016/j.trc.2021.103065.
- Macroscopic modelling and robust control of bi-modal multi-region urban road networks. Transportation Research Part B: Methodological 104, 616–637. URL: https://www.sciencedirect.com/science/article/pii/S0191261515300370, doi:10.1016/j.trb.2017.05.007.
- Antifragile Control Systems: The Case of an Anti-Symmetric Network Model of the Tumor-Immune-Drug Interactions. Symmetry 14, 2034. doi:10.3390/sym14102034.
- Antifragility as a complex system’s response to perturbations, volatility, and time. URL: http://arxiv.org/abs/2312.13991, doi:10.48550/arXiv.2312.13991. arXiv:2312.13991 [q-bio].
- Antifragile Control Systems: The case of mobile robot trajectory tracking in the presence of uncertainty.
- COVID-19 as a window of opportunity for cycling: Evidence from the first wave. Transport Policy 116, 144–156. URL: https://www.sciencedirect.com/science/article/pii/S0967070X21003565, doi:10.1016/j.tranpol.2021.12.003.
- A methodology for road traffic resilience analysis and review of related concepts. Transportmetrica A: Transport Science 14, 130–154. URL: https://doi.org/10.1080/23249935.2017.1363315, doi:10.1080/23249935.2017.1363315. publisher: Taylor & Francis _eprint: https://doi.org/10.1080/23249935.2017.1363315.
- The robustness value of public transport development plans. Journal of Transport Geography 51, 236–246. URL: https://www.sciencedirect.com/science/article/pii/S0966692316000120, doi:10.1016/j.jtrangeo.2016.01.011.
- The relationship between congestion levels and accidents URL: https://trid.trb.org/view/680981. number: MD-03-SP 208B46,.
- Data efficient reinforcement learning and adaptive optimal perimeter control of network traffic dynamics. Transportation Research Part C: Emerging Technologies 142, 103759. doi:10.1016/j.trc.2022.103759.
- Mitigating Increased Driving after the COVID-19 Pandemic: An Analysis on Mode Share, Travel Demand, and Public Transport Capacity. Transportation Research Record 2677, 154–167. URL: https://doi.org/10.1177/03611981211037884, doi:10.1177/03611981211037884. publisher: SAGE Publications Inc.
- Optimizing upside variability and antifragility in renewable energy system design. Scientific Reports 13, 9138. URL: https://www.nature.com/articles/s41598-023-36379-8, doi:10.1038/s41598-023-36379-8. number: 1 Publisher: Nature Publishing Group.
- Evaluating Disturbance Robustness of Railway Schedules. Journal of Intelligent Transportation Systems 18, 106–120. URL: https://doi.org/10.1080/15472450.2013.801714, doi:10.1080/15472450.2013.801714. publisher: Taylor & Francis _eprint: https://doi.org/10.1080/15472450.2013.801714.
- Macroscopic fundamental diagrams for train operations - are we there yet?, in: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 1–8. URL: https://ieeexplore.ieee.org/abstract/document/8883374, doi:10.1109/MTITS.2019.8883374.
- Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness. Transportation Planning and Technology 41, 421–447. URL: https://doi.org/10.1080/03081060.2018.1453916, doi:10.1080/03081060.2018.1453916. publisher: Routledge _eprint: https://doi.org/10.1080/03081060.2018.1453916.
- The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological 28, 269–287. URL: https://www.sciencedirect.com/science/article/pii/0191261594900027, doi:10.1016/0191-2615(94)90002-7.
- A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transportation Research Part B: Methodological 39, 187–196. URL: https://www.sciencedirect.com/science/article/pii/S0191261504000487, doi:10.1016/j.trb.2004.04.003.
- An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transportation Research Part B: Methodological 42, 771–781. URL: https://www.sciencedirect.com/science/article/pii/S0191261508000799, doi:10.1016/j.trb.2008.06.008.
- Adaptive offsets for signalized streets. Transportation Research Part B: Methodological 117, 926–934. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261517306914, doi:10.1016/j.trb.2017.08.011.
- Road Accidents and Traffic Flows: An Econometric Investigation. Economica 67, 101–121. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0335.00198, doi:10.1111/1468-0335.00198. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0335.00198.
- Improving average travel speeds estimated by planning models. Transportation Research Record , 68–68.
- Robustness of city road networks at different granularities. Physica A: Statistical Mechanics and its Applications 411, 21–34. URL: https://www.sciencedirect.com/science/article/pii/S037843711400466X, doi:10.1016/j.physa.2014.05.073.
- Federal Statistical Office of Switzerland, 2020. Mobilität und Verkehr: Panorama - 2020 | Publikation. URL: https://www.bfs.admin.ch/asset/de/13695321.
- An Open Toolbox for Integrated Optimization of Public Transport, in: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 1–7. URL: https://ieeexplore.ieee.org/abstract/document/8883335, doi:10.1109/MTITS.2019.8883335.
- Dynamic optimal congestion pricing in multi-region urban networks by application of a Multi-Layer-Neural network. Transportation Research Part C: Emerging Technologies 134, 103485. URL: https://www.sciencedirect.com/science/article/pii/S0968090X2100471X, doi:10.1016/j.trc.2021.103485.
- A traffic signal and loop detector dataset of an urban intersection regulated by a fully actuated signal control system. Data in Brief 48, 109117. URL: https://www.sciencedirect.com/science/article/pii/S2352340923002366, doi:10.1016/j.dib.2023.109117.
- Time-to-Green Predictions for Fully-Actuated Signal Control Systems With Supervised Learning. IEEE Transactions on Intelligent Transportation Systems , 1–14URL: https://ieeexplore.ieee.org/abstract/document/10400986, doi:10.1109/TITS.2023.3348634. conference Name: IEEE Transactions on Intelligent Transportation Systems.
- Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological 42, 759–770. URL: https://www.sciencedirect.com/science/article/pii/S0191261508000180, doi:10.1016/j.trb.2008.02.002.
- Optimal Perimeter Control for Two Urban Regions With Macroscopic Fundamental Diagrams: A Model Predictive Approach. IEEE Transactions on Intelligent Transportation Systems 14, 348–359. doi:10.1109/TITS.2012.2216877. conference Name: IEEE Transactions on Intelligent Transportation Systems.
- Developments in Transport Policy: The Evolution of Capacity Charges on the UK Rail Network. Journal of Transport Economics and Policy (JTEP) 36, 341–354.
- The photographic method of studying traffic behavior. Highway Research Board Proceedings 13. URL: https://trid.trb.org/view/120821.
- Coordinated distributed adaptive perimeter control for large-scale urban road networks. Transportation Research Part C: Emerging Technologies 77, 495–515. URL: https://www.sciencedirect.com/science/article/pii/S0968090X16302509, doi:10.1016/j.trc.2016.12.002.
- Robust perimeter control design for an urban region. Transportation Research Part B: Methodological 68, 315–332. URL: https://www.sciencedirect.com/science/article/pii/S0191261514001179, doi:10.1016/j.trb.2014.06.010.
- A Concept for Robust, High Density Terminal Air Traffic Operations, in: 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. American Institute of Aeronautics and Astronautics. URL: https://arc.aiaa.org/doi/abs/10.2514/6.2010-9292, doi:10.2514/6.2010-9292. _eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2010-9292.
- Sur les fonctions convexes et les inégualités entre les valeurs Moyennes URL: https://zenodo.org/records/2371297, doi:10.1007/bf02418571.
- Antifragility Predicts the Robustness and Evolvability of Biological Networks through Multi-Class Classification with a Convolutional Neural Network. Entropy 22, 986. doi:10.3390/e22090986.
- Enhancing model-based feedback perimeter control with data-driven online adaptive optimization. Transportation Research Part B: Methodological 96, 26–45. URL: https://www.sciencedirect.com/science/article/pii/S019126151630710X, doi:10.1016/j.trb.2016.10.011.
- Susceptibility of optimal train schedules to stochastic disturbances of process times. Flexible Services and Manufacturing Journal 26, 466–489. URL: https://doi.org/10.1007/s10696-013-9172-9, doi:10.1007/s10696-013-9172-9.
- Stochastic approximations for the macroscopic fundamental diagram of urban networks. Transportation Research Part B: Methodological 81, 904–916. URL: https://www.sciencedirect.com/science/article/pii/S0191261515001964, doi:10.1016/j.trb.2015.09.002.
- Estimating MFDs in simple networks with route choice. Transportation Research Part B: Methodological 57, 468–484. URL: https://linkinghub.elsevier.com/retrieve/pii/S0191261513000878, doi:10.1016/j.trb.2013.05.005.
- Enforcing optimal routing through dynamic avoidance maps. Transportation Research Part B: Methodological 149, 118–137. URL: https://www.sciencedirect.com/science/article/pii/S0191261521000813, doi:10.1016/j.trb.2021.05.002.
- Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion. Transportation Research Part B: Methodological 40, 792–806. URL: https://www.sciencedirect.com/science/article/pii/S0191261505001177, doi:10.1016/j.trb.2005.10.003.
- Heterogeneous Innovation and the Antifragile Economy .
- Macroscopic urban dynamics: Analytical and numerical comparisons of existing models. Transportation Research Part B: Methodological 101, 245–267. URL: https://www.sciencedirect.com/science/article/pii/S0191261516307846, doi:10.1016/j.trb.2017.04.002.
- The impact of COVID-19 pandemic on public transport usage and route choice: Evidences from a long-term tracking study in urban area. Transport Policy 116, 258–268. URL: https://www.sciencedirect.com/science/article/pii/S0967070X21003620, doi:10.1016/j.tranpol.2021.12.009.
- Vulnerability and resilience of transport systems – A discussion of recent research. Transportation Research Part A: Policy and Practice 81, 16–34. URL: https://www.sciencedirect.com/science/article/pii/S0965856415001603, doi:10.1016/j.tra.2015.06.002.
- A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform. Transportation Research Part B: Methodological 44, 1202–1219. URL: https://www.sciencedirect.com/science/article/pii/S0191261510000238, doi:10.1016/j.trb.2010.02.008.
- On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications. Transportation Research Part B: Methodological 104, 256–271. URL: https://www.sciencedirect.com/science/article/pii/S0191261516306622, doi:10.1016/j.trb.2017.07.003.
- Towards Robust Deep Reinforcement Learning for Traffic Signal Control: Demand Surges, Incidents and Sensor Failures, in: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3559–3566. doi:10.1109/ITSC.2019.8917451.
- Jensen’s inequality predicts effects of environmental variation. Trends in Ecology & Evolution 14, 361–366. URL: https://www.cell.com/trends/ecology-evolution/abstract/S0169-5347(99)01664-X, doi:10.1016/S0169-5347(99)01664-X. publisher: Elsevier.
- Macroscopic Fundamental Diagrams for Low-Altitude Air city Transport. Transportation Research Part C: Emerging Technologies 152, 104141. URL: https://www.sciencedirect.com/science/article/pii/S0968090X23001304, doi:10.1016/j.trc.2023.104141.
- Data fusion for estimating Macroscopic Fundamental Diagram in large-scale urban networks. Transportation Research Part C: Emerging Technologies 137, 103555. URL: https://www.sciencedirect.com/science/article/pii/S0968090X22000043, doi:10.1016/j.trc.2022.103555.
- Train following model for urban rail transit performance analysis. Transportation Research Part C: Emerging Technologies 148, 104037. URL: https://www.sciencedirect.com/science/article/pii/S0968090X23000268, doi:10.1016/j.trc.2023.104037.
- Identifying trips and activities and their characteristics from gps raw data without further information. Arbeitsberichte Verkehrs-und Raumplanung 502.
- Benchmark Analysis for Robustness of Multi-Scale Urban Road Networks Under Global Disruptions. IEEE Transactions on Intelligent Transportation Systems , 1–11URL: https://ieeexplore.ieee.org/abstract/document/9714769, doi:10.1109/TITS.2022.3149969. conference Name: IEEE Transactions on Intelligent Transportation Systems.
- Effect of stochastic transition in the fundamental diagram of traffic flow. Transportation Research Part B: Methodological 87, 1–13. URL: https://www.sciencedirect.com/science/article/pii/S019126151600028X, doi:10.1016/j.trb.2016.02.003.
- Economic Model Predictive Control of Large-Scale Urban Road Networks via Perimeter Control and Regional Route Guidance. IEEE Transactions on Intelligent Transportation Systems 19, 1112–1121. URL: https://ieeexplore.ieee.org/abstract/document/7964750, doi:10.1109/TITS.2017.2716541. conference Name: IEEE Transactions on Intelligent Transportation Systems.
- Improved speed-flow relationships for planning applications. Transportation research record 1572, 18–23.
- Antifragile Perimeter Control: Anticipating and Gaining from Disruptions with Reinforcement Learning. URL: https://arxiv.org/abs/2402.12665v1.
- Antifragile: Things That Gain from Disorder. Reprint edition ed., Random House Publishing Group, New York.
- Mathematical definition, mapping, and detection of (anti)fragility. Quantitative Finance 13, 1677–1689. doi:10.1080/14697688.2013.800219.
- Working with Convex Responses: Antifragility from Finance to Oncology. Entropy 25, 343. URL: https://www.mdpi.com/1099-4300/25/2/343, doi:10.3390/e25020343. number: 2 Publisher: Multidisciplinary Digital Publishing Institute.
- Evaluating resilience in urban transportation systems for sustainability: A systems-based Bayesian network model. Transportation Research Part C: Emerging Technologies 121, 102840. URL: https://www.sciencedirect.com/science/article/pii/S0968090X20307427, doi:10.1016/j.trc.2020.102840.
- Evaluation of analytical approximation methods for the macroscopic fundamental diagram. Transportation Research Part C: Emerging Technologies 114, 1–19. URL: https://www.sciencedirect.com/science/article/pii/S0968090X19307661, doi:10.1016/j.trc.2020.02.003.
- U.S. Bureau of Public Roads, 1964. Traffic assignment manual for application with a large, high speed computer. US Department of Commerce.
- Airport system development. U.S. Government Printing Office. Google-Books-ID: hihBG2mzB1MC.
- U.S. Department of Transportation, 2019. National Transportation Statistics (NTS). URL: https://tinyurl.com/rosapntlbtsNTS, doi:10.21949/1503663. publisher: Not Available.
- A bi-objective user equilibrium model of travel time reliability in a road network. Transportation Research Part B: Methodological 66, 4–15. URL: https://www.sciencedirect.com/science/article/pii/S019126151300180X, doi:10.1016/j.trb.2013.10.007.
- Heterogeneity aware urban traffic control in a connected vehicle environment: A joint framework for congestion pricing and perimeter control. Transportation Research Part C: Emerging Technologies 105, 439–455. URL: https://www.sciencedirect.com/science/article/pii/S0968090X18316127, doi:10.1016/j.trc.2019.06.007.
- Traffic Simulation Performance Optimization through Multi-Resolution Modeling of Road Segments, in: Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Association for Computing Machinery, New York, NY, USA. pp. 281–288. URL: https://dl.acm.org/doi/10.1145/2769458.2769475, doi:10.1145/2769458.2769475.
- Long-term pathways to deep decarbonization of the transport sector in the post-COVID world. Transport Policy 110, 28–36. URL: https://www.sciencedirect.com/science/article/pii/S0967070X21001621, doi:10.1016/j.tranpol.2021.05.018.
- Model-free perimeter metering control for two-region urban networks using deep reinforcement learning. Transportation Research Part C: Emerging Technologies 124, 102949. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X20308469, doi:10.1016/j.trc.2020.102949.
- Scalable multi-region perimeter metering control for urban networks: A multi-agent deep reinforcement learning approach. Transportation Research Part C: Emerging Technologies 148, 104033. URL: https://linkinghub.elsevier.com/retrieve/pii/S0968090X23000220, doi:10.1016/j.trc.2023.104033.
- Resilience of Transportation Systems: Concepts and Comprehensive Review. IEEE Transactions on Intelligent Transportation Systems 20, 4262–4276. doi:10.1109/TITS.2018.2883766. conference Name: IEEE Transactions on Intelligent Transportation Systems.