Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System (2402.00839v2)

Published 1 Feb 2024 in cs.CR, cs.AI, cs.LG, and cs.NI

Abstract: The effectiveness of Intrusion Detection Systems (IDS) is critical in an era where cyber threats are becoming increasingly complex. Machine learning (ML) and deep learning (DL) models provide an efficient and accurate solution for identifying attacks and anomalies in computer networks. However, using ML and DL models in IDS has led to a trust deficit due to their non-transparent decision-making. This transparency gap in IDS research is significant, affecting confidence and accountability. To address, this paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data, while also adapting a new Explainable AI (XAI) methodology. Unlike most GNN-based IDS that depend on labeled network traffic and node features, thereby overlooking critical packet-level information, our approach leverages a broader range of traffic data through network flows, including edge attributes, to improve detection capabilities and adapt to novel threats. Through empirical testing, we establish that our approach not only achieves high accuracy with 99.47% in threat detection but also advances the field by providing clear, actionable explanations of its analytical outcomes. This research also aims to bridge the current gap and facilitate the broader integration of ML/DL technologies in cybersecurity defenses by offering a local and global explainability solution that is both precise and interpretable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. S. Neupane, J. Ables, W. Anderson, S. Mittal, S. Rahimi, I. Banicescu, and M. Seale, “Explainable intrusion detection systems (x-ids): A survey of current methods, challenges, and opportunities,” IEEE Access, vol. 10, pp. 112 392–112 415, 2022.
  2. K. He, D. D. Kim, and M. R. Asghar, “Adversarial machine learning for network intrusion detection systems: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 538–566, 2023.
  3. E. Ak and B. Canberk, “Fsc: Two-scale ai-driven fair sensitivity control for 802.11ax networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
  4. T. Bilot, N. E. Madhoun, K. A. Agha, and A. Zouaoui, “Graph neural networks for intrusion detection: A survey,” IEEE Access, vol. 11, pp. 49 114–49 139, 2023.
  5. A. R. E.-M. Baahmed, G. Andresini, C. Robardet, and A. Appice, “Using graph neural networks for the detection and explanation of network intrusions,” International Workshop on eXplainable Knowledge Discovery in Data Mining, 2023.
  6. D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, “Parameterized explainer for graph neural network,” Advances in neural information processing systems, vol. 33, pp. 19 620–19 631, 2020.
  7. D. Gunning and D. Aha, “Darpa’s explainable artificial intelligence (xai) program,” AI magazine, vol. 40, no. 2, pp. 44–58, 2019.
  8. S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang, and K. Xu, “Graph neural tangent kernel: Fusing graph neural networks with graph kernels,” Advances in neural information processing systems, vol. 32, 2019.
  9. G. Secinti, P. B. Darian, B. Canberk, and K. R. Chowdhury, “Resilient end-to-end connectivity for software defined unmanned aerial vehicular networks,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–5.
  10. E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-e: A self-supervised network intrusion detection system based on graph neural networks,” Knowledge-Based Systems, vol. 258, p. 110030, 2022.
  11. S. Fraihat, S. Makhadmeh, M. Awad, M. A. Al-Betar, and A. Al-Redhaei, “Intrusion detection system for large-scale iot netflow networks using machine learning with modified arithmetic optimization algorithm,” Internet of Things, p. 100819, 2023.
  12. E. Ak and B. Canberk, “Forecasting quality of service for next-generation data-driven wifi6 campus networks,” IEEE Transactions on Network and Service Management, vol. 18, no. 4, pp. 4744–4755, 2021.
  13. S. Mane and D. Rao, “Explaining network intrusion detection system using explainable ai framework,” arXiv preprint arXiv:2103.07110, 2021.
  14. M. Wang, K. Zheng, Y. Yang, and X. Wang, “An explainable machine learning framework for intrusion detection systems,” IEEE Access, vol. 8, pp. 73 127–73 141, 2020.
  15. S. Patil, V. Varadarajan, S. M. Mazhar, A. Sahibzada, N. Ahmed, O. Sinha, S. Kumar, K. Shaw, and K. Kotecha, “Explainable artificial intelligence for intrusion detection system,” Electronics, vol. 11, no. 19, p. 3079, 2022.
  16. W. W. Lo, G. Kulatilleke, M. Sarhan, S. Layeghy, and M. Portmann, “Xg-bot: An explainable deep graph neural network for botnet detection and forensics,” Internet of Things, vol. 22, p. 100747, 2023.
  17. W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann, “E-graphsage: A graph neural network based intrusion detection system for iot,” in NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium.   IEEE, 2022, pp. 1–9.
  18. P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph infomax,” arXiv preprint arXiv:1809.10341, 2018.
  19. P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability methods for graph convolutional neural networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 10 772–10 781.
  20. F. Baldassarre and H. Azizpour, “Explainability techniques for graph convolutional networks,” in ICML 2019 Workshop” Learning and Reasoning with Graph-Structured Representations”, 2019.
  21. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Advances in neural information processing systems, vol. 30, 2017.
  22. Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, “Graphlime: Local interpretable model explanations for graph neural networks,” IEEE Transactions on Knowledge and Data Engineering, 2022.
  23. M. Vu and M. T. Thai, “Pgm-explainer: Probabilistic graphical model explanations for graph neural networks,” Advances in neural information processing systems, vol. 33, pp. 12 225–12 235, 2020.
  24. T. Funke, M. Khosla, M. Rathee, and A. Anand, “Z orro: Valid, sparse, and stable explanations in graph neural networks,” IEEE Transactions on Knowledge and Data Engineering, 2022.
  25. Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating explanations for graph neural networks,” Advances in neural information processing systems, vol. 32, 2019.
  26. H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural networks: A taxonomic survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 5, pp. 5782–5799, 2022.

Summary

We haven't generated a summary for this paper yet.

Reddit Logo Streamline Icon: https://streamlinehq.com