Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Semantic Control in Discrete Latent Spaces with Transformer Quantized Variational Autoencoders (2402.00723v1)

Published 1 Feb 2024 in cs.CL

Abstract: Achieving precise semantic control over the latent spaces of Variational AutoEncoders (VAEs) holds significant value for downstream tasks in NLP as the underlying generative mechanisms could be better localised, explained and improved upon. Recent research, however, has struggled to achieve consistent results, primarily due to the inevitable loss of semantic information in the variational bottleneck and limited control over the decoding mechanism. To overcome these challenges, we investigate discrete latent spaces in Vector Quantized Variational AutoEncoders (VQVAEs) to improve semantic control and generation in Transformer-based VAEs. In particular, We propose T5VQVAE, a novel model that leverages the controllability of VQVAEs to guide the self-attention mechanism in T5 at the token-level, exploiting its full generalization capabilities. Experimental results indicate that T5VQVAE outperforms existing state-of-the-art VAE models, including Optimus, in terms of controllability and preservation of semantic information across different tasks such as auto-encoding of sentences and mathematical expressions, text transfer, and inference. Moreover, T5VQVAE exhibits improved inference capabilities, suggesting potential applications for downstream natural language and symbolic reasoning tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yingji Zhang (12 papers)
  2. Danilo S. Carvalho (23 papers)
  3. Marco Valentino (46 papers)
  4. Ian Pratt-Hartmann (25 papers)
  5. Andre Freitas (52 papers)
Citations (3)