Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intent Assurance using LLMs guided by Intent Drift (2402.00715v2)

Published 1 Feb 2024 in cs.AI, cs.NI, and stat.ME

Abstract: Intent-Based Networking (IBN) presents a paradigm shift for network management, by promising to align intents and business objectives with network operations--in an automated manner. However, its practical realization is challenging: 1) processing intents, i.e., translate, decompose and identify the logic to fulfill the intent, and 2) intent conformance, that is, considering dynamic networks, the logic should be adequately adapted to assure intents. To address the latter, intent assurance is tasked with continuous verification and validation, including taking the necessary actions to align the operational and target states. In this paper, we define an assurance framework that allows us to detect and act when intent drift occurs. To do so, we leverage AI-driven policies, generated by LLMs which can quickly learn the necessary in-context requirements, and assist with the fulfiLLMent and assurance of intents.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura, “Intent-Based Networking - Concepts and Definitions,” RFC 9315, Oct. 2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9315
  2. B. Martini, M. Gharbaoui, and P. Castoldi, “Intent-based network slicing for sdn vertical services with assurance: Context, design and preliminary experiments,” Future Generation Computer Systems, vol. 142, pp. 101–116, 2023.
  3. X. Zheng and A. Leivadeas, “Network assurance in intent-based networking data centers with machine learning techniques,” in 2021 17th International Conference on Network and Service Management (CNSM).   IEEE, 2021, pp. 14–20.
  4. M. Falkner and J. Apostolopoulos, “Intent-based networking for the enterprise: a modern network architecture,” Communications of the ACM, vol. 65, no. 11, pp. 108–117, 2022.
  5. K. Samdanis, A. N. Abbou, J. Song, and T. Taleb, “Ai/ml service enablers & model maintenance for beyond 5g networks,” IEEE Network, 2023.
  6. S. K. Perepu, J. P. Martins, R. Souza, and K. Dey, “Intent-based multi-agent reinforcement learning for service assurance in cellular networks,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 2879–2884.
  7. J. Wang, J. Liu, J. Li, and N. Kato, “Artificial intelligence-assisted network slicing: Network assurance and service provisioning in 6g,” IEEE Vehicular Technology Magazine, vol. 18, no. 1, pp. 49–58, 2023.
  8. N. F. S. de Sousa, M. T. Islam, R. U. Mustafa, D. A. L. Perez, C. E. Rothenberg, and P. H. Gomes, “Machine learning-assisted closed-control loops for beyond 5g multi-domain zero-touch networks,” Journal of Network and Systems Management, vol. 30, no. 3, p. 46, 2022.
  9. J. Gallego-Madrid, R. Sanchez-Iborra, P. M. Ruiz, and A. F. Skarmeta, “Machine learning-based zero-touch network and service management: A survey,” Digital Communications and Networks, vol. 8, no. 2, pp. 105–123, 2022.
  10. S. K. Perepu, J. P. Martins, K. Dey et al., “Multi-agent reinforcement learning for intent-based service assurance in cellular networks,” arXiv preprint arXiv:2208.03740, 2022.
  11. R. Mohamed, I. Lambadaris, A. Leivadeas, J. Chinneck, T. Morris, and P. Djukic, “Automatic feasibility restoration for 5g cloud gaming,” in ICC 2023-IEEE International Conference on Communications.   IEEE, 2023, pp. 846–851.
  12. V. S. Mai, R. J. La, T. Zhang, and A. Battou, “End-to-end quality-of-service assurance with autonomous systems: 5g/6g case study,” in 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC).   IEEE, 2022, pp. 644–651.
  13. K. Edeline, T. Carlisi, J. Iurman, B. Claise, and B. Donnet, “Towards a closed-looped automation for service assurance with the dxagent,” in 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), 2022, pp. 67–72.
  14. A. Leivadeas and M. Falkner, “A survey on intent based networking,” IEEE Communications Surveys & Tutorials, 2022.
  15. A. Leivadeas and F. Matthias, “Autonomous network assurance in intent based networking: Vision and challenges,” pp. 1–10, 2023.
  16. K. Dzeparoska, A. Tizghadam, and A. Leon-Garcia, “Emergence: An intent fulfillment system,” IEEE Communications Magazine, pp. 1–6, 2024.
  17. A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z. Granville, W. Willinger, and S. G. Rao, “Hey, lumi! using natural language for {{\{{intent-based}}\}} network management,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021, pp. 625–639.
  18. Y. Ouyang, C. Yang, Y. Song, X. Mi, and M. Guizani, “A brief survey and implementation on refinement for intent-driven networking,” IEEE Network, vol. 35, no. 6, pp. 75–83, 2021.
  19. S. C. Kleene, “On notation for ordinal numbers,” The Journal of Symbolic Logic, vol. 3, no. 4, pp. 150–155, 1938.
  20. K. Dzeparoska, J. Lin, A. Tizghadam, and A. Leon-Garcia, “Llm-based policy generation for intent-based management of applications,” in 2023 19th International Conference on Network and Service Management (CNSM).   IEEE, 2023, pp. 1–7.
  21. K. Dzeparoska, N. Beigi-Mohammadi, A. Tizghadam, and A. Leon-Garcia, “Towards a self-driving management system for the automated realization of intents,” IEEE Access, vol. 9, pp. 159 882–159 907, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com