Exploring Homogeneous and Heterogeneous Consistent Label Associations for Unsupervised Visible-Infrared Person ReID (2402.00672v4)
Abstract: Unsupervised visible-infrared person re-identification (USL-VI-ReID) endeavors to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency between the feature space and the pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to quantify the inconsistency between the pseudo-label space and the feature space, subsequently minimizing it. The proposed MULT ensures that the generated pseudo-labels maintain alignment across modalities while upholding structural consistency within intra-modality. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the side effects of noisy pseudo-labels while simultaneously aligning different modalities, coupled with an Alternative Modality-Invariant Representation Learning (AMIRL) framework. Experiments demonstrate that our proposed method outperforms existing state-of-the-art USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. Code is available at https://github.com/FranklinLingfeng/code_for_MULT.
- Lingfeng He (13 papers)
- De Cheng (32 papers)
- Nannan Wang (106 papers)
- Xinbo Gao (194 papers)