Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factor copula models for non-Gaussian longitudinal data (2402.00668v3)

Published 1 Feb 2024 in stat.ME and stat.AP

Abstract: This article presents factor copula approaches to model temporal dependency of non-Gaussian (continuous/discrete) longitudinal data. Factor copula models are canonical vine copulas which explain the underlying dependence structure of a multivariate data through latent variables, and therefore can be easily interpreted and implemented to unbalanced longitudinal data. We develop regression models for continuous, binary and ordinal longitudinal data including covariates, by using factor copula constructions with subject-specific latent variables. Considering homogeneous within-subject dependence, our proposed models allow for feasible parametric inference in moderate to high dimensional situations, using two-stage (IFM) estimation method. We assess the finite sample performance of the proposed models with extensive simulation studies. In the empirical analysis, the proposed models are applied for analysing different longitudinal responses of two real world data sets. Moreover, we compare the performances of these models with some widely used random effect models using standard model selection techniques and find substantial improvements. Our studies suggest that factor copula models can be good alternatives to random effect models and can provide better insights to temporal dependency of longitudinal data of arbitrary nature.

Summary

We haven't generated a summary for this paper yet.