Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bialgebraic Reasoning on Higher-Order Program Equivalence (2402.00625v2)

Published 1 Feb 2024 in cs.LO and cs.PL

Abstract: Logical relations constitute a key method for reasoning about contextual equivalence of programs in higher-order languages. They are usually developed on a per-case basis, with a new theory required for each variation of the language or of the desired notion of equivalence. In the present paper we introduce a general construction of (step-indexed) logical relations at the level of Higher-Order Mathematical Operational Semantics, a highly parametric categorical framework for modeling the operational semantics of higher-order languages. Our main result asserts that for languages whose weak operational model forms a lax bialgebra, the logical relation is automatically sound for contextual equivalence. Our abstract theory is shown to instantiate to combinatory logics and $\lambda$-calculi with recursive types, and to different flavours of contextual equivalence.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com