Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Dialog Safety using Socially Aware Contrastive Learning (2402.00446v1)

Published 1 Feb 2024 in cs.CL

Abstract: State-of-the-art conversational AI systems raise concerns due to their potential risks of generating unsafe, toxic, unethical, or dangerous content. Previous works have developed datasets to teach conversational agents the appropriate social paradigms to respond effectively to specifically designed hazardous content. However, models trained on these adversarial datasets still struggle to recognize subtle unsafe situations that appear naturally in conversations or introduce an inappropriate response in a casual context. To understand the extent of this problem, we study prosociality in both adversarial and casual dialog contexts and audit the response quality of general-purpose LLMs in terms of propensity to produce unsafe content. We propose a dual-step fine-tuning process to address these issues using a socially aware n-pair contrastive loss. Subsequently, we train a base model that integrates prosocial behavior by leveraging datasets like Moral Integrity Corpus (MIC) and ProsocialDialog. Experimental results on several dialog datasets demonstrate the effectiveness of our approach in generating socially appropriate responses.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Souvik Das (28 papers)
  2. Rohini K. Srihari (9 papers)