Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regression-Based Proximal Causal Inference (2402.00335v3)

Published 1 Feb 2024 in stat.ME

Abstract: Negative controls are increasingly used to evaluate the presence of potential unmeasured confounding in observational studies. Beyond the use of negative controls to detect the presence of residual confounding, proximal causal inference (PCI) was recently proposed to de-bias confounded causal effect estimates, by leveraging a pair of treatment and outcome negative control or confounding proxy variables. While formal methods for statistical inference have been developed for PCI, these methods can be challenging to implement as they involve solving complex integral equations that are typically ill-posed. We develop a regression-based PCI approach, employing two-stage generalized linear regression models (GLMs) to implement PCI, which obviates the need to solve difficult integral equations. The proposed approach has merit in that (i) it is applicable to continuous, count, and binary outcomes cases, making it relevant to a wide range of real-world applications, and (ii) it is easy to implement using off-the-shelf software for GLMs. We establish the statistical properties of regression-based PCI and illustrate their performance in both synthetic and real-world empirical applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com