Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explaining the $γγ+X$ Excesses at $\approx$151.5 GeV via the Drell-Yan Production of a Higgs Triplet (2402.00101v1)

Published 31 Jan 2024 in hep-ph and hep-ex

Abstract: The multi-lepton anomalies and searches for the associated production of a narrow resonance indicate the existence of a $\approx$151 GeV Higgs with a significance of $>5\sigma$ and $>3.9\sigma$, respectively. On the one hand, these anomalies require a sizable branching fraction of the new scalar to $WW$, while on the other hand, no $ZZ$ signal at this mass has been observed. This suggests that the new boson is the neutral component of an $SU(2)_L$ triplet with zero hypercharge. This field leads to a positive definite shift in the $W$ mass, as preferred by the current global fit, and is produced via the Drell-Yan process $pp\to W*\to \Delta0\Delta\pm$. We use the side-bands of the ATLAS analysis \cite{ATLAS:2023omk} of the associated production of the Standard Model Higgs in the di-photon channel to search for this production mode of the triplet. Since the dominant decays of $\Delta\pm$ depend only on its mass, the effect in the 22 signal categories considered by ATLAS is completely correlated. We find that the ones most sensitive to the Drell-Yan production of the triplet Higgs show consistent excesses at a mass of $\approx$151.5 GeV. Combining these channels in a likelihood ratio test, a non-zero Br$[\Delta0\to\gamma\gamma] = 0.66\%$ is preferred by $\approx$3$\sigma$, supporting our conjecture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. ATLAS Collaboration, G. Aad et al., “Model-independent search for the presence of new physics in events including H→γ⁢γ→𝐻𝛾𝛾H\rightarrow\gamma\gammaitalic_H → italic_γ italic_γ with s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV pp data recorded by the ATLAS detector at the LHC,” JHEP 07 (2023) 176, arXiv:2301.10486 [hep-ex].
  2. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., “Precision electroweak measurements on the Z𝑍Zitalic_Z resonance,” Phys. Rept. 427 (2006) 257–454, arXiv:hep-ex/0509008.
  3. HFLAV Collaboration, Y. S. Amhis et al., “Averages of b-hadron, c-hadron, and τ𝜏\tauitalic_τ-lepton properties as of 2021,” Phys. Rev. D 107 no. 5, (2023) 052008, arXiv:2206.07501 [hep-ex].
  4. Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
  5. P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12 (1964) 132–133.
  6. F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13 (1964) 321–323.
  7. P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13 (1964) 508–509.
  8. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation Laws and Massless Particles,” Phys. Rev. Lett. 13 (1964) 585–587.
  9. ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].
  10. CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].
  11. CDF, D0 Collaboration, T. Aaltonen et al., “Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron,” Phys. Rev. Lett. 109 (2012) 071804, arXiv:1207.6436 [hep-ex].
  12. CMS Collaboration, S. Chatrchyan et al., “Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs,” Phys. Rev. Lett. 110 no. 8, (2013) 081803, arXiv:1212.6639 [hep-ex].
  13. ATLAS Collaboration, G. Aad et al., “Evidence for the spin-0 nature of the Higgs boson using ATLAS data,” Phys. Lett. B 726 (2013) 120–144, arXiv:1307.1432 [hep-ex].
  14. ATLAS, CMS Collaboration, G. Aad et al., “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV,” JHEP 08 (2016) 045, arXiv:1606.02266 [hep-ex].
  15. ATLAS, CMS Collaboration, J. M. Langford, “Combination of Higgs measurements from ATLAS and CMS: couplings and k - framework,” PoS LHCP2020 (2021) 136.
  16. ATLAS Collaboration, “Combined measurements of Higgs boson production and decay using up to 139139139139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of proton-proton collision data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS experiment,” Tech. Rep. ATLAS-CONF-2021-053, 2021.
  17. V. Silveira and A. Zee, “SCALAR PHANTOMS,” Phys. Lett. B 161 (1985) 136–140.
  18. M. Pietroni, “The Electroweak phase transition in a nonminimal supersymmetric model,” Nucl. Phys. B 402 (1993) 27–45, arXiv:hep-ph/9207227.
  19. J. McDonald, “Gauge singlet scalars as cold dark matter,” Phys. Rev. D 50 (1994) 3637–3649, arXiv:hep-ph/0702143.
  20. T. D. Lee, “A Theory of Spontaneous T Violation,” Phys. Rev. D 8 (1973) 1226–1239.
  21. H. E. Haber and G. L. Kane, “The Search for Supersymmetry: Probing Physics Beyond the Standard Model,” Phys. Rept. 117 (1985) 75–263.
  22. J. E. Kim, “Light Pseudoscalars, Particle Physics and Cosmology,” Phys. Rept. 150 (1987) 1–177.
  23. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
  24. N. Turok and J. Zadrozny, “Electroweak baryogenesis in the two doublet model,” Nucl. Phys. B 358 (1991) 471–493.
  25. W. Konetschny and W. Kummer, “Nonconservation of Total Lepton Number with Scalar Bosons,” Phys. Lett. B 70 (1977) 433–435.
  26. T. P. Cheng and L.-F. Li, “Neutrino Masses, Mixings and Oscillations in S⁢U⁢(2)L⊗U⁢(1)tensor-product𝑆𝑈subscript2𝐿𝑈1SU(2)_{L}\otimes U(1)italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ⊗ italic_U ( 1 ) Models of Electroweak Interactions,” Phys. Rev. D 22 (1980) 2860.
  27. G. Lazarides, Q. Shafi, and C. Wetterich, “Proton Lifetime and Fermion Masses in an SO(10) Model,” Nucl. Phys. B 181 (1981) 287–300.
  28. J. Schechter and J. W. F. Valle, “Neutrino Masses in S⁢U⁢(2)L⊗U⁢(1)tensor-product𝑆𝑈subscript2𝐿𝑈1SU(2)_{L}\otimes U(1)italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ⊗ italic_U ( 1 ) Theories,” Phys. Rev. D 22 (1980) 2227.
  29. M. Magg and C. Wetterich, “Neutrino Mass Problem and Gauge Hierarchy,” Phys. Lett. B 94 (1980) 61–64.
  30. R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation,” Phys. Rev. D 23 (1981) 165.
  31. J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the Recent Measurements of the Top-Quark and W-Boson Masses on Electroweak Precision Fits,” Phys. Rev. Lett. 129 no. 27, (2022) 271801, arXiv:2204.04204 [hep-ph].
  32. P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and A. Voigt, “Precise calculation of the W𝑊Witalic_W boson pole mass beyond the standard model with FlexibleSUSY,” Phys. Rev. D 106 no. 9, (2022) 095023, arXiv:2204.05285 [hep-ph].
  33. E. Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, “SMEFT analysis of mW𝑊{}_{W}start_FLOATSUBSCRIPT italic_W end_FLOATSUBSCRIPT,” JHEP 08 (2022) 308, arXiv:2204.05260 [hep-ph].
  34. A. Crivellin and B. Mellado, “Anomalies in Particle Physics,” arXiv:2309.03870 [hep-ph].
  35. A. Crivellin, Y. Fang, O. Fischer, S. Bhattacharya, M. Kumar, E. Malwa, B. Mellado, N. Rapheeha, X. Ruan, and Q. Sha, “Accumulating evidence for the associated production of a new Higgs boson at the LHC,” Phys. Rev. D 108 no. 11, (2023) 115031, arXiv:2109.02650 [hep-ph].
  36. S. von Buddenbrock, A. S. Cornell, A. Fadol, M. Kumar, B. Mellado, and X. Ruan, “Multi-lepton signatures of additional scalar bosons beyond the Standard Model at the LHC,” J. Phys. G 45 no. 11, (2018) 115003, arXiv:1711.07874 [hep-ph].
  37. O. Fischer et al., “Unveiling hidden physics at the LHC,” Eur. Phys. J. C 82 no. 8, (2022) 665, arXiv:2109.06065 [hep-ph].
  38. S. von Buddenbrock, N. Chakrabarty, A. S. Cornell, D. Kar, M. Kumar, T. Mandal, B. Mellado, B. Mukhopadhyaya, and R. G. Reed, “The compatibility of LHC Run 1 data with a heavy scalar of mass around 270 GeV,” arXiv:1506.00612 [hep-ph].
  39. S. von Buddenbrock, N. Chakrabarty, A. S. Cornell, D. Kar, M. Kumar, T. Mandal, B. Mellado, B. Mukhopadhyaya, R. G. Reed, and X. Ruan, “Phenomenological signatures of additional scalar bosons at the LHC,” Eur. Phys. J. C 76 no. 10, (2016) 580, arXiv:1606.01674 [hep-ph].
  40. S. von Buddenbrock, A. S. Cornell, E. D. R. Iarilala, M. Kumar, B. Mellado, X. Ruan, and E. M. Shrif, “Constraints on a 2HDM with a singlet scalar and implications in the search for heavy bosons at the LHC,” J. Phys. G 46 no. 11, (2019) 115001, arXiv:1809.06344 [hep-ph].
  41. S. Buddenbrock, A. S. Cornell, Y. Fang, A. Fadol Mohammed, M. Kumar, B. Mellado, and K. G. Tomiwa, “The emergence of multi-lepton anomalies at the LHC and their compatibility with new physics at the EW scale,” JHEP 10 (2019) 157, arXiv:1901.05300 [hep-ph].
  42. Y. Hernandez, M. Kumar, A. S. Cornell, S.-E. Dahbi, Y. Fang, B. Lieberman, B. Mellado, K. Monnakgotla, X. Ruan, and S. Xin, “The anomalous production of multi-lepton and its impact on the measurement of W⁢h𝑊ℎWhitalic_W italic_h production at the LHC,” Eur. Phys. J. C 81 no. 4, (2021) 365, arXiv:1912.00699 [hep-ph].
  43. S. von Buddenbrock, R. Ruiz, and B. Mellado, “Anatomy of inclusive t⁢t¯⁢W𝑡¯𝑡𝑊t\bar{t}Witalic_t over¯ start_ARG italic_t end_ARG italic_W production at hadron colliders,” Phys. Lett. B 811 (2020) 135964, arXiv:2009.00032 [hep-ph].
  44. S. Banik, G. Coloretti, A. Crivellin, and B. Mellado, “Uncovering New Higgses in the LHC Analyses of Differential t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG Cross Sections,” arXiv:2308.07953 [hep-ph].
  45. ATLAS Collaboration, G. Aad et al., “Inclusive and differential cross-sections for dilepton t⁢t¯𝑡¯𝑡t\overline{t}italic_t over¯ start_ARG italic_t end_ARG production measured in s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV pp collisions with the ATLAS detector,” JHEP 07 (2023) 141, arXiv:2303.15340 [hep-ex].
  46. CMS Collaboration, A. Tumasyan et al., “Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV,” Eur. Phys. J. C 83 no. 7, (2023) 667, arXiv:2206.09466 [hep-ex].
  47. ATLAS Collaboration, G. Aad et al., “Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using H→W⁢W*→e⁢ν⁢μ⁢ν→𝐻𝑊superscript𝑊→𝑒𝜈𝜇𝜈H\rightarrow WW^{*}\rightarrow e\nu\mu\nuitalic_H → italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → italic_e italic_ν italic_μ italic_ν decays in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 108 (2023) 032005, arXiv:2207.00338 [hep-ex].
  48. G. Coloretti, A. Crivellin, S. Bhattacharya, and B. Mellado, “Searching for low-mass resonances decaying into W𝑊Witalic_W bosons,” Phys. Rev. D 108 no. 3, (2023) 035026, arXiv:2302.07276 [hep-ph].
  49. CMS Collaboration, A. Tumasyan et al., “A portrait of the Higgs boson by the CMS experiment ten years after the discovery.,” Nature 607 no. 7917, (2022) 60–68, arXiv:2207.00043 [hep-ex].
  50. ATLAS Collaboration, G. Aad et al., “Higgs boson production cross-section measurements and their EFT interpretation in the 4⁢ℓ4ℓ4\ell4 roman_ℓ decay channel at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV with the ATLAS detector,” Eur. Phys. J. C 80 no. 10, (2020) 957, arXiv:2004.03447 [hep-ex]. [Erratum: Eur.Phys.J.C 81, 29 (2021), Erratum: Eur.Phys.J.C 81, 398 (2021)].
  51. M. Chabab, M. C. Peyranère, and L. Rahili, “Probing the Higgs sector of Y=0𝑌0Y=0italic_Y = 0 Higgs Triplet Model at LHC,” Eur. Phys. J. C 78 no. 10, (2018) 873, arXiv:1805.00286 [hep-ph].
  52. P. Fileviez Perez, H. H. Patel, and A. D. Plascencia, “On the W𝑊Witalic_W mass and new Higgs bosons,” Phys. Lett. B 833 (2022) 137371, arXiv:2204.07144 [hep-ph].
  53. Y. Cheng, X.-G. He, F. Huang, J. Sun, and Z.-P. Xing, “Electroweak precision tests for triplet scalars,” Nucl. Phys. B 989 (2023) 116118, arXiv:2208.06760 [hep-ph].
  54. T.-K. Chen, C.-W. Chiang, and K. Yagyu, “Explanation of the W𝑊Witalic_W mass shift at CDF II in the extended Georgi-Machacek model,” Phys. Rev. D 106 no. 5, (2022) 055035, arXiv:2204.12898 [hep-ph].
  55. T. G. Rizzo, “Kinetic mixing, dark Higgs triplets, and mWsubscript𝑚𝑊m_{W}italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT,” Phys. Rev. D 106 no. 3, (2022) 035024, arXiv:2206.09814 [hep-ph].
  56. W. Chao, M. Jin, H.-J. Li, and Y.-Q. Peng, “Axion-like Dark Matter from the Type-II Seesaw Mechanism,” arXiv:2210.13233 [hep-ph].
  57. J.-W. Wang, X.-J. Bi, P.-F. Yin, and Z.-H. Yu, “Electroweak dark matter model accounting for the CDF W-mass anomaly,” Phys. Rev. D 106 no. 5, (2022) 055001, arXiv:2205.00783 [hep-ph].
  58. Y. Shimizu and S. Takeshita, “W𝑊Witalic_W boson mass and grand unification via the type-II seesaw-like mechanism,” Nucl. Phys. B 994 (2023) 116290, arXiv:2303.11070 [hep-ph].
  59. G. Lazarides, R. Maji, R. Roshan, and Q. Shafi, “Heavier W𝑊Witalic_W boson, dark matter, and gravitational waves from strings in an SO(10) axion model,” Phys. Rev. D 106 no. 5, (2022) 055009, arXiv:2205.04824 [hep-ph].
  60. G. Senjanović and M. Zantedeschi, “SU(5) grand unification and W-boson mass,” Phys. Lett. B 837 (2023) 137653, arXiv:2205.05022 [hep-ph].
  61. A. Crivellin, M. Kirk, and A. Thapa, “Minimal model for the W𝑊Witalic_W-boson mass, (g−2)μsubscript𝑔2𝜇(g-2)_{\mu}( italic_g - 2 ) start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, h→μ+⁢μ−→ℎsuperscript𝜇superscript𝜇h\to\mu^{+}\mu^{-}italic_h → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and quark-mixing-matrix unitarity,” Phys. Rev. D 108 no. 3, (2023) L031702, arXiv:2305.03081 [hep-ph].
  62. T.-K. Chen, C.-W. Chiang, and K. Yagyu, “CP violation in a model with Higgs triplets,” JHEP 06 (2023) 069, arXiv:2303.09294 [hep-ph]. [Erratum: JHEP 07, 169 (2023)].
  63. S. Ashanujjaman, S. Banik, G. Coloretti, A. Crivellin, B. Mellado, and A.-T. Mulaudzi, “S⁢U⁢(2)L𝑆𝑈subscript2𝐿SU(2)_{L}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT triplet scalar as the origin of the 95 GeV excess?,” Phys. Rev. D 108 no. 9, (2023) L091704, arXiv:2306.15722 [hep-ph].
  64. D. A. Ross and M. J. G. Veltman, “Neutral Currents in Neutrino Experiments,” Nucl. Phys. B 95 (1975) 135–147.
  65. J. F. Gunion, R. Vega, and J. Wudka, “Higgs triplets in the standard model,” Phys. Rev. D 42 (1990) 1673–1691.
  66. P. H. Chankowski, S. Pokorski, and J. Wagner, “(Non)decoupling of the Higgs triplet effects,” Eur. Phys. J. C 50 (2007) 919–933, arXiv:hep-ph/0605302.
  67. T. Blank and W. Hollik, “Precision observables in S⁢U⁢(2)L⊗U⁢(1)tensor-product𝑆𝑈subscript2𝐿𝑈1SU(2)_{L}\otimes U(1)italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ⊗ italic_U ( 1 ) models with an additional Higgs triplet,” Nucl. Phys. B 514 (1998) 113–134, arXiv:hep-ph/9703392.
  68. J. R. Forshaw, A. Sabio Vera, and B. E. White, “Mass bounds in a model with a triplet Higgs,” JHEP 06 (2003) 059, arXiv:hep-ph/0302256.
  69. M.-C. Chen, S. Dawson, and T. Krupovnickas, “Higgs triplets and limits from precision measurements,” Phys. Rev. D 74 (2006) 035001, arXiv:hep-ph/0604102.
  70. R. S. Chivukula, N. D. Christensen, and E. H. Simmons, “Low-energy effective theory, unitarity, and non-decoupling behavior in a model with heavy Higgs-triplet fields,” Phys. Rev. D 77 (2008) 035001, arXiv:0712.0546 [hep-ph].
  71. P. Bandyopadhyay and A. Costantini, “Obscure Higgs boson at Colliders,” Phys. Rev. D 103 no. 1, (2021) 015025, arXiv:2010.02597 [hep-ph].
  72. A. Sirlin, “On the O⁢(α2)𝑂superscript𝛼2O(\alpha^{2})italic_O ( italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) Corrections to τ⁢(μ),mW,mZ𝜏𝜇subscript𝑚𝑊subscript𝑚𝑍\tau(\mu),m_{W},m_{Z}italic_τ ( italic_μ ) , italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT in the S⁢U⁢(2)L⊗U⁢(1)tensor-product𝑆𝑈subscript2𝐿𝑈1SU(2)_{L}\otimes U(1)italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ⊗ italic_U ( 1 ) Theory,” Phys. Rev. D 29 (1984) 89.
  73. A. Djouadi and C. Verzegnassi, “Virtual Very Heavy Top Effects in LEP / SLC Precision Measurements,” Phys. Lett. B 195 (1987) 265–271.
  74. L. Avdeev, J. Fleischer, S. Mikhailov, and O. Tarasov, “O⁢(α⁢αs2)𝑂𝛼superscriptsubscript𝛼𝑠2O(\alpha\alpha_{s}^{2})italic_O ( italic_α italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) correction to the electroweak ρ𝜌\rhoitalic_ρ parameter,” Phys. Lett. B 336 (1994) 560–566, arXiv:hep-ph/9406363. [Erratum: Phys.Lett.B 349, 597–598 (1995)].
  75. K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, “QCD corrections from top quark to relations between electroweak parameters to order αs2superscriptsubscript𝛼𝑠2\alpha_{s}^{2}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 75 (1995) 3394–3397, arXiv:hep-ph/9504413.
  76. K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, “Corrections of order 𝒪⁢(GF⁢Mt2⁢αs2)𝒪subscript𝐺𝐹superscriptsubscript𝑀𝑡2superscriptsubscript𝛼𝑠2{\cal O}(G_{F}M_{t}^{2}\alpha_{s}^{2})caligraphic_O ( italic_G start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) to the ρ𝜌\rhoitalic_ρ parameter,” Phys. Lett. B 351 (1995) 331–338, arXiv:hep-ph/9502291.
  77. M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, “Precise prediction for the W𝑊Witalic_W boson mass in the standard model,” Phys. Rev. D 69 (2004) 053006, arXiv:hep-ph/0311148.
  78. G. Degrassi, P. Gambino, and P. P. Giardino, “The mW−mZsubscript𝑚𝑊subscript𝑚𝑍m_{\scriptscriptstyle W}-m_{\scriptscriptstyle Z}italic_m start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT interdependence in the Standard Model: a new scrutiny,” JHEP 05 (2015) 154, arXiv:1411.7040 [hep-ph].
  79. ATLAS Collaboration, “Improved W𝑊Witalic_W boson Mass Measurement using 7 TeV Proton-Proton Collisions with the ATLAS Detector,” Tech. Rep. ATLAS-CONF-2023-004, 2023.
  80. LHCb Collaboration, R. Aaij et al., “Measurement of the W𝑊Witalic_W boson mass,” JHEP 01 (2022) 036, arXiv:2109.01113 [hep-ex].
  81. CDF Collaboration, T. Aaltonen et al., “High-precision measurement of the W𝑊Witalic_W boson mass with the CDF II detector,” Science 376 no. 6589, (2022) 170–176.
  82. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, S. Schael et al., “Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP,” Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex].
  83. R. Ruiz, “QCD Corrections to Pair Production of Type III Seesaw Leptons at Hadron Colliders,” JHEP 12 (2015) 165, arXiv:1509.05416 [hep-ph].
  84. A. A H, B. Fuks, H.-S. Shao, and Y. Simon, “Precision predictions for exotic lepton production at the Large Hadron Collider,” Phys. Rev. D 107 no. 7, (2023) 075011, arXiv:2301.03640 [hep-ph].
  85. A. Djouadi and M. Spira, “SUSY - QCD corrections to Higgs boson production at hadron colliders,” Phys. Rev. D 62 (2000) 014004, arXiv:hep-ph/9912476.
  86. J. Butterworth, H. Debnath, P. Fileviez Perez, and F. Mitchell, “Custodial Symmetry Breaking and Higgs Signatures at the LHC,” arXiv:2309.10027 [hep-ph].
  87. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2” Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].
  88. DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP 02 (2014) 057, arXiv:1307.6346 [hep-ex].
  89. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, “UFO - The Universal FeynRules Output,” Comput. Phys. Commun. 183 (2012) 1201–1214, arXiv:1108.2040 [hep-ph].
  90. A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, “FeynRules 2.0 - A complete toolbox for tree-level phenomenology,” Comput. Phys. Commun. 185 (2014) 2250–2300, arXiv:1310.1921 [hep-ph].
  91. C. Degrande, “Automatic evaluation of UV and R2 terms for beyond the Standard Model Lagrangians: a proof-of-principle,” Comput. Phys. Commun. 197 (2015) 239–262, arXiv:1406.3030 [hep-ph].
  92. S. Bhattacharya, G. Coloretti, A. Crivellin, S.-E. Dahbi, Y. Fang, M. Kumar, and B. Mellado, “Growing Excesses of New Scalars at the Electroweak Scale,” arXiv:2306.17209 [hep-ph].
  93. G. Coloretti, A. Crivellin, and B. Mellado, “Combined Explanation of LHC Multi-Lepton, Di-Photon and Top-Quark Excesses,” arXiv:2312.17314 [hep-ph].
  94. ATLAS Collaboration, G. Aad et al., “Search for t⁢t¯⁢H/A→t⁢t¯⁢t⁢t¯→𝑡¯𝑡𝐻𝐴𝑡¯𝑡𝑡¯𝑡t\overline{t}H/A\to t\overline{t}t\overline{t}italic_t over¯ start_ARG italic_t end_ARG italic_H / italic_A → italic_t over¯ start_ARG italic_t end_ARG italic_t over¯ start_ARG italic_t end_ARG production in the multilepton final state in proton–proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 07 (2023) 203, arXiv:2211.01136 [hep-ex].
  95. CMS Collaboration, A. M. Sirunyan et al., “Observation of the Production of Three Massive Gauge Bosons at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG =13 TeV,” Phys. Rev. Lett. 125 no. 15, (2020) 151802, arXiv:2006.11191 [hep-ex].
  96. ATLAS Collaboration, G. Aad et al., “Observation of W⁢W⁢W𝑊𝑊𝑊WWWitalic_W italic_W italic_W Production in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG =13  TeV with the ATLAS Detector,” Phys. Rev. Lett. 129 no. 6, (2022) 061803, arXiv:2201.13045 [hep-ex].
  97. CEPC Study Group Collaboration, M. Dong et al., “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” arXiv:1811.10545 [hep-ex].
  98. F. An et al., “Precision Higgs physics at the CEPC,” Chin. Phys. C 43 no. 4, (2019) 043002, arXiv:1810.09037 [hep-ex].
  99. CLICdp, CLIC Collaboration, T. K. Charles et al., “The Compact Linear Collider (CLIC) - 2018 Summary Report,” arXiv:1812.06018 [physics.acc-ph].
  100. FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 no. 2, (2019) 261–623.
  101. FCC Collaboration, A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C 79 no. 6, (2019) 474.
  102. ILC Collaboration, “The International Linear Collider Technical Design Report - Volume 2: Physics,” arXiv:1306.6352 [hep-ph].
  103. “The International Linear Collider Technical Design Report - Volume 3.I: Accelerator & in the Technical Design Phase,” arXiv:1306.6353 [physics.acc-ph].

Summary

We haven't generated a summary for this paper yet.