Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of attention performance post-longitudinal tDCS via functional connectivity and machine learning methods (2402.00090v1)

Published 31 Jan 2024 in q-bio.NC and cs.HC

Abstract: Attention is the brain's mechanism for selectively processing specific stimuli while filtering out irrelevant information. Characterizing changes in attention following long-term interventions (such as transcranial direct current stimulation (tDCS)) has seldom been emphasized in the literature. To classify attention performance post-tDCS, this study uses functional connectivity and machine learning algorithms. Fifty individuals were split into experimental and control conditions. On Day 1, EEG data was obtained as subjects executed an attention task. From Day 2 through Day 8, the experimental group was administered 1mA tDCS, while the control group received sham tDCS. On Day 10, subjects repeated the task mentioned on Day 1. Functional connectivity metrics were used to classify attention performance using various machine learning methods. Results revealed that combining the Adaboost model and recursive feature elimination yielded a classification accuracy of 91.84%. We discuss the implications of our results in developing neurofeedback frameworks to assess attention.

Summary

We haven't generated a summary for this paper yet.