Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arithmetic Average Density Fusion -- Part IV: Distributed Heterogeneous Fusion of RFS and LRFS Filters via Variational Approximation (2402.00080v1)

Published 31 Jan 2024 in eess.SY, cs.SY, and eess.SP

Abstract: This paper, the fourth part of a series of papers on the arithmetic average (AA) density fusion approach and its application for target tracking, addresses the intricate challenge of distributed heterogeneous multisensor multitarget tracking, where each inter-connected sensor operates a probability hypothesis density (PHD) filter, a multiple Bernoulli (MB) filter or a labeled MB (LMB) filter and they cooperate with each other via information fusion. Earlier papers in this series have proven that the proper AA fusion of these filters is all exactly built on averaging their respective unlabeled/labeled PHDs. Based on this finding, two PHD-AA fusion approaches are proposed via variational minimization of the upper bound of the Kullback-Leibler divergence between the local and multi-filter averaged PHDs subject to cardinality consensus based on the Gaussian mixture implementation, enabling heterogeneous filter cooperation. One focuses solely on fitting the weights of the local Gaussian components (L-GCs), while the other simultaneously fits all the parameters of the L-GCs at each sensor, both seeking average consensus on the unlabeled PHD, irrespective of the specific posterior form of the local filters. For the distributed peer-to-peer communication, both the classic consensus and flooding paradigms have been investigated. Simulations have demonstrated the effectiveness and flexibility of the proposed approaches in both homogeneous and heterogeneous scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. R. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1152–1178, Oct. 2003.
  2. M. Üney, D. E. Clark, and S. J. Julier, “Distributed fusion of PHD filters via exponential mixture densities,” IEEE J. Sel. Topics Signal Process, vol. 7, no. 3, pp. 521–531, Jun. 2013.
  3. G. Battistelli, L. Chisci, C. Fantacci, A. Farina, and A. Graziano, “Consensus CPHD filter for distributed multitarget tracking,” IEEE J. Sel. Topics Signal Process, vol. 7, no. 3, pp. 508–520, Jun. 2013.
  4. M. Üney, J. Houssineau, E. Delande, S. J. Julier, and D. E. Clark, “Fusion of finite set distributions: Pointwise consistency and global cardinality,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 6, pp. 2759–2773, 2019.
  5. S. Li, W. Yi, R. Hoseinnezhad, G. Battistelli, B. Wang, and L. Kong, “Robust distributed fusion with labeled random finite sets,” IEEE Trans. Signal Process., vol. 66, no. 2, pp. 278–293, 2017.
  6. T. Li, M. Mallick, and Q. Pan, “A parallel filtering-communication based cardinality consensus approach for real-time distributed PHD filtering,” IEEE Sensors J., vol. 20, no. 22, pp. 13 824–13 832, 2020.
  7. T. Li, X. Wang, Y. Liang, and Q. Pan, “On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking,” IEEE Trans. Signal Process., vol. 68, pp. 2883–2896, 2020.
  8. K. Da, T. Li, Y. Zhu, and Q. Fu, “Gaussian mixture particle jump-Markov-CPHD fusion for multitarget tracking using sensors with limited views,” IEEE Trans. Signal Inform. Process. Netw., vol. 6, pp. 605–616, Aug. 2020.
  9. W. Yi, G. Li, and G. Battistelli, “Distributed multi-sensor fusion of PHD filters with different sensor fields of view,” IEEE Trans. Signal Process., vol. 68, pp. 5204–5218, 2020.
  10. L. Gao, G. Battistelli, and L. Chisci, “Multiobject fusion with minimum information loss,” IEEE Signal Process. Lett., vol. 27, pp. 201 – 205, Jan. 2020.
  11. G. Li, G. Li, and Y. He, “Resolvable group target tracking via multi-Bernoulli filter and its application to sensor control scenario,” IEEE Trans. Signal Process., vol. 70, pp. 6286–6299, 2022.
  12. G. Li, G. Li, and Y. He, “Labeled multi-Bernoulli filter based multiple resolvable group targets tracking with leader–follower model,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 5, pp. 6683–6694, 2023.
  13. T. Li, K. Da, H. Fan, and B. Yu, “Multisensor random finite set information fusion: Advances, challenges, and opportunities,” in Secure and Digitalized Future Mobility: Shaping the Ground and Air Vehicles Cooperation, Y. Cao, O. Kaiwartya, and T. Li, Eds.   CRC Press, Nov. 2022.
  14. T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can heterogeneous internet of things build our future: A survey,” IEEE Commun. Surv. Tutor., vol. 20, no. 3, pp. 2011–2027, 2018.
  15. J. Yan, W. Pu, S. Zhou, H. Liu, and M. S. Greco, “Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks,” IEEE Trans. Signal Process., vol. 68, pp. 4055–4068, 2020.
  16. W. Yi and L. Chai, “Heterogeneous multi-sensor fusion with random finite set multi-object densities,” IEEE Trans. Signal Process., vol. 69, pp. 3399–3414, 2021.
  17. B.-N. Vo, M. Mallick, Y. Bar-shalom, S. Coraluppi, R. Osborne, R. Mahler, and B.-T. Vo, “Multitarget tracking,” in Wiley Encyclopedia of Electrical and Electronics Engineering.   John Wiley & Sons, 2015.
  18. M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, and S. Singh, “Exploiting heterogeneity in sensor networks,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., vol. 2, 2005, pp. 878–890 vol. 2.
  19. T. Li, R. Yan, K. Da, and H. Fan, “Arithmetic average density fusion - part III: Heterogeneous unlabeled and labeled RFS filter fusion,” IEEE Trans. Aerosp. Electron. Syst., 2023, dOI: 10.1109/TAES.2023.3334223.
  20. B.-N. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo methods for multitarget filtering with random finite sets,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 4, pp. 1224–1245, Oct. 2005.
  21. B. N. Vo and W. K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4091–4104, Nov 2006.
  22. B.-N. Vo, B.-T. Vo, and A. Cantoni, “The cardinality balanced multi-target multi-Bernoulli filter and its implementations,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 409–423, Feb. 2009.
  23. B.-T. Vo and B.-N. Vo, “Labeled random finite sets and multi-object conjugate priors,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3460–3475, Jul. 2013.
  24. S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, “The labeled Multi-Bernoulli filter,” IEEE Trans. Signal Processing, vol. 62, no. 12, pp. 3246–3260, 2014.
  25. T. Li, “Arithmetic average density fusion - part II: Unified derivation for (labeled) RFS fusion,” IEEE Trans. Aerosp. Eletron. Syst., 2024, dOI:10.1109/TAES.2024.3359592.
  26. T. Bailey, S. Julier, and G. Agamennoni, “On conservative fusion of information with unknown non-Gaussian dependence,” in Proc. FUSION 2012, Singapore, Jul. 2012, pp. 1876–1883.
  27. T. Li, H. Fan, J. García, and J. M. Corchado, “Second-order statistics analysis and comparison between arithmetic and geometric average fusion: Application to multi-sensor target tracking,” Inf. Fusion, vol. 51, pp. 233 – 243, 2019.
  28. T. Li, Y. Song, E. Song, and H. Fan, “Arithmetic average density fusion - part I: Some statistic and information-theoretic results,” Information Fusion, vol. 104, p. 102199, 2024.
  29. G. Koliander, Y. El-Laham, P. M. Djurić, and F. Hlawatsch, “Fusion of probability density functions,” Proc. IEEE, vol. 110, no. 4, pp. 404–453, 2022.
  30. M. Kayaalp, Y. İnan, E. Telatar, and A. H. Sayed, “On the arithmetic and geometric fusion of beliefs for distributed inference,” IEEE Transactions on Automatic Control, pp. 1–16, 2023.
  31. M. Kayaalp, Y. İnan, V. Koivunen, E. Telatar, and A. H. Sayed, “On the fusion strategies for federated decision making,” in 2023 IEEE Statistical Signal Processing Workshop (SSP), Hanoi, Vietnam, July 2023, pp. 270–274.
  32. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.
  33. A. H. Sayed, “Adaptation, learning, and optimization over networks,” Found. Trends in Machine Learn., vol. 7, no. 4-5, pp. 311–801, 2014.
  34. T. Li, J. Corchado, and J. Prieto, “Convergence of distributed flooding and its application for distributed Bayesian filtering,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3, pp. 580–591, Sep. 2017.
  35. B.-T. Vo, B.-N. Vo, and D. Phung, “Labeled random finite sets and the Bayes multi-target tracking filter,” IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6554–6567, Dec. 2014.
  36. T. Li, F. Hlawatsch, and P. M. Djuríc, “Cardinality-consensus-based PHD filtering for distributed multitarget tracking,” IEEE Signal Process. Lett., vol. 26, no. 1, pp. 49–53, Jan. 2019.
  37. J. R. Hershey and P. A. Olsen, “Approximating the Kullback Leibler divergence between Gaussian mixture models,” in IEEE Int. Conf. Acoust. Speech Signal Process., vol. 4.   IEEE, 2007, pp. IV–317.
  38. M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponential families, and variational inference,” Found. Trends Mach. Learn., vol. 1, no. 1–2, pp. 1–305, 2008.
  39. J. L. Williams, “An efficient, variational approximation of the best fitting multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 63, no. 1, pp. 258–273, 2014.
  40. Y. Xia, K. Granström, L. Svensson, M. Fatemi, Á. F. García-Fernández, and J. L. Williams, “Poisson multi-Bernoulli approximations for multiple extended object filtering,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 2, pp. 890–906, 2021.
  41. K. Granström, M. Fatemi, and L. Svensson, “Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 1, pp. 208–225, 2019.
  42. A. R. Runnalls, “Kullback-leibler approach to Gaussian mixture reduction,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 989–999, 2007.
  43. T. Li, J. Corchado, and S. Sun, “Partial consensus and conservative fusion of Gaussian mixtures for distributed PHD fusion,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 5, pp. 2150–2163, Oct. 2019.
  44. T. Li and F. Hlawatsch, “A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters,” Inf. Fusion, vol. 73, pp. 111–124, 2021.
  45. T. Li, Y. Xin, Z. Liu, and K. Da, “Best fit of mixture for computationally efficient poisson multi-Bernoulli mixture filtering,” Signal Process., vol. 202, p. 108739, 2023.
  46. L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-varying metropolis weights,” Automatica, vol. 1, 2006.
  47. M. N. Do, “Fast approximation of Kullback-leibler distance for dependence trees and hidden markov models,” IEEE Signal Process. lett., vol. 10, no. 4, pp. 115–118, 2003.
  48. Goldberger, Gordon, and Greenspan, “An efficient image similarity measure based on approximations of kl-divergence between two Gaussian mixtures,” in Proceedings Ninth IEEE International conference on computer vision.   IEEE, 2003, pp. 487–493.
  49. D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance evaluation of multi-object filters,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3447–3457, Aug. 2008.
  50. R. Kulhavý and F. Kraus, “On duality of regularized exponential and linear forgetting,” Automatica, vol. 32, no. 10, pp. 1403–1415, 1996.
  51. A. E. Abbas, “A Kullback-Leibler view of linear and log-linear pools,” Decision Analysis, vol. 6, no. 1, pp. 25–37, 2009.

Summary

We haven't generated a summary for this paper yet.