Diffusion MRI with Machine Learning (2402.00019v3)
Abstract: \hspace{2mm} Diffusion-weighted magnetic resonance imaging (dMRI) of the brain offers unique capabilities including noninvasive probing of tissue microstructure and structural connectivity. It is widely used for clinical assessment of disease and injury, and for neuroscience research. Analyzing the dMRI data to extract useful information for medical and scientific purposes can be challenging. The dMRI measurements may suffer from strong noise and artifacts, and may exhibit high inter-session and inter-scanner variability in the data, as well as inter-subject heterogeneity in brain structure. Moreover, the relationship between measurements and the phenomena of interest can be highly complex. Recent years have witnessed increasing use of machine learning methods for dMRI analysis. This manuscript aims to assess these efforts, with a focus on methods that have addressed data preprocessing and harmonization, microstructure mapping, tractography, and white matter tract analysis. We study the main findings, strengths, and weaknesses of the existing methods and suggest topics for future research. We find that machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis. However, for this to happen, several shortcomings of existing methods and critical unresolved issues need to be addressed. There is a pressing need to improve evaluation practices, to increase the availability of rich training datasets and validation benchmarks, as well as model generalizability, reliability, and explainability concerns.
- G. Theaud, J.-C. Houde, A. Boré, F. Rheault, F. Morency, and M. Descoteaux, “Tractoflow: A robust, efficient and reproducible diffusion mri pipeline leveraging nextflow & singularity,” Neuroimage, vol. 218, p. 116889, 2020.
- J.-D. Tournier, R. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.-H. Yeh, and A. Connelly, “Mrtrix3: A fast, flexible and open software framework for medical image processing and visualisation,” Neuroimage, vol. 202, p. 116137, 2019.
- E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, I. Nimmo-Smith, and D. Contributors, “Dipy, a library for the analysis of diffusion mri data,” Frontiers in neuroinformatics, vol. 8, p. 8, 2014.
- C. M. Tax, M. Bastiani, J. Veraart, E. Garyfallidis, and M. O. Irfanoglu, “What’s new and what’s next in diffusion mri preprocessing,” NeuroImage, vol. 249, p. 118830, 2022.
- M. Bach et al., “Methodological considerations on tract-based spatial statistics (tbss),” Neuroimage, vol. 100, pp. 358–369, 2014.
- D. K. Jones and M. Cercignani, “Twenty-five pitfalls in the analysis of diffusion mri data,” NMR in Biomedicine, vol. 23, no. 7, pp. 803–820, 2010.
- C. Pierpaoli, “Artifacts in diffusion mri,” Diffusion MRI: theory, methods and applications, pp. 303–318, 2010.
- D. K. Jones and P. J. Basser, ““squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted mr data,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 52, no. 5, pp. 979–993, 2004.
- D. R. Roalf, M. Quarmley, M. A. Elliott, T. D. Satterthwaite, S. N. Vandekar, K. Ruparel, E. D. Gennatas, M. E. Calkins, T. M. Moore, R. Hopson, et al., “The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort,” Neuroimage, vol. 125, pp. 903–919, 2016.
- A. Yendiki, K. Koldewyn, S. Kakunoori, N. Kanwisher, and B. Fischl, “Spurious group differences due to head motion in a diffusion mri study,” Neuroimage, vol. 88, pp. 79–90, 2014.
- S. Oldham, A. Arnatkeviciūtė, R. E. Smith, J. Tiego, M. A. Bellgrove, and A. Fornito, “The efficacy of different preprocessing steps in reducing motion-related confounds in diffusion mri connectomics,” NeuroImage, vol. 222, p. 117252, 2020.
- G. L. Baum, D. R. Roalf, P. A. Cook, R. Ciric, A. F. Rosen, C. Xia, M. A. Elliott, K. Ruparel, R. Verma, B. Tunç, et al., “The impact of in-scanner head motion on structural connectivity derived from diffusion mri,” Neuroimage, vol. 173, pp. 275–286, 2018.
- D. S. Novikov, V. G. Kiselev, and S. N. Jespersen, “On modeling,” Magnetic resonance in medicine, vol. 79, no. 6, pp. 3172–3193, 2018.
- D. S. Novikov, E. Fieremans, S. N. Jespersen, and V. G. Kiselev, “Quantifying brain microstructure with diffusion mri: Theory and parameter estimation,” NMR in Biomedicine, vol. 32, no. 4, p. e3998, 2019.
- L. Kerkelä, K. Seunarine, R. N. Henriques, J. D. Clayden, and C. A. Clark, “Improved reproducibility of diffusion kurtosis imaging using regularized non-linear optimization informed by artificial neural networks,” arXiv preprint arXiv:2203.07327, 2022.
- A. Tabesh, J. H. Jensen, B. A. Ardekani, and J. A. Helpern, “Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging,” Magnetic resonance in medicine, vol. 65, no. 3, pp. 823–836, 2011.
- R. Neto Henriques, Advanced methods for diffusion MRI data analysis and their application to the healthy ageing brain. PhD thesis, Ph.D. thesis, University of Cambridge, 2018.
- D. K. Jones, T. R. Knösche, and R. Turner, “White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion mri,” Neuroimage, vol. 73, pp. 239–254, 2013.
- K. H. Maier-Hein et al., “The challenge of mapping the human connectome based on diffusion tractography,” Nature communications, vol. 8, no. 1, pp. 1–13, 2017.
- C. Thomas, Q. Y. Frank, M. O. Irfanoglu, P. Modi, K. S. Saleem, D. A. Leopold, and C. Pierpaoli, “Anatomical accuracy of brain connections derived from diffusion mri tractography is inherently limited,” Proceedings of the National Academy of Sciences, vol. 111, no. 46, pp. 16574–16579, 2014.
- R. H. Fick, N. Sepasian, M. Pizzolato, A. Ianus, and R. Deriche, “Assessing the feasibility of estimating axon diameter using diffusion models and machine learning,” in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 766–769, IEEE, 2017.
- P. Poulin, D. Jörgens, P.-M. Jodoin, and M. Descoteaux, “Tractography and machine learning: Current state and open challenges,” Magnetic resonance imaging, vol. 64, pp. 37–48, 2019.
- K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.
- G. L. Nedjati-Gilani, T. Schneider, M. G. Hall, C. A. Wheeler-Kingshott, and D. C. Alexander, “Machine learning based compartment models with permeability for white matter microstructure imaging,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14-18, 2014, Proceedings, Part III 17, pp. 257–264, Springer, 2014.
- G. L. Nedjati-Gilani, T. Schneider, M. G. Hall, N. Cawley, I. Hill, O. Ciccarelli, I. Drobnjak, C. A. G. Wheeler-Kingshott, and D. C. Alexander, “Machine learning based compartment models with permeability for white matter microstructure imaging,” NeuroImage, vol. 150, pp. 119–135, 2017.
- V. Golkov, A. Dosovitskiy, J. I. Sperl, M. I. Menzel, M. Czisch, P. Sämann, T. Brox, and D. Cremers, “Q-space deep learning: twelve-fold shorter and model-free diffusion mri scans,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1344–1351, 2016.
- J. Wasserthal, P. Neher, and K. H. Maier-Hein, “Tractseg-fast and accurate white matter tract segmentation,” NeuroImage, vol. 183, pp. 239–253, 2018.
- Q. Tian, B. Bilgic, Q. Fan, C. Liao, C. Ngamsombat, Y. Hu, T. Witzel, K. Setsompop, J. R. Polimeni, and S. Y. Huang, “Deepdti: High-fidelity six-direction diffusion tensor imaging using deep learning,” NeuroImage, vol. 219, p. 117017, 2020.
- Y. Qin, Y. Li, Z. Zhuo, Z. Liu, Y. Liu, and C. Ye, “Multimodal super-resolved q-space deep learning,” Medical Image Analysis, vol. 71, p. 102085, 2021.
- Z. Hu, Y. Wang, Z. Zhang, J. Zhang, H. Zhang, C. Guo, Y. Sun, and H. Guo, “Distortion correction of single-shot epi enabled by deep-learning,” Neuroimage, vol. 221, p. 117170, 2020.
- Y. Hong, J. Kim, G. Chen, W. Lin, P.-T. Yap, and D. Shen, “Longitudinal prediction of infant diffusion mri data via graph convolutional adversarial networks,” IEEE transactions on medical imaging, vol. 38, no. 12, pp. 2717–2725, 2019.
- J. Weine, R. J. van Gorkum, C. T. Stoeck, V. Vishnevskiy, and S. Kozerke, “Synthetically trained convolutional neural networks for improved tensor estimation from free-breathing cardiac dti,” Computerized Medical Imaging and Graphics, vol. 99, p. 102075, 2022.
- D. Karimi and A. Gholipour, “Diffusion tensor estimation with transformer neural networks,” Artificial Intelligence in Medicine, vol. 130, p. 102330, 2022.
- M. P. Kaandorp, S. Barbieri, R. Klaassen, H. W. van Laarhoven, H. Crezee, P. T. While, A. J. Nederveen, and O. J. Gurney-Champion, “Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients,” Magnetic resonance in medicine, vol. 86, no. 4, pp. 2250–2265, 2021.
- S. Barbieri, O. J. Gurney-Champion, R. Klaassen, and H. C. Thoeny, “Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted mri,” Magnetic resonance in medicine, vol. 83, no. 1, pp. 312–321, 2020.
- J. P. de Almeida Martins, M. Nilsson, B. Lampinen, M. Palombo, P. T. While, C.-F. Westin, and F. Szczepankiewicz, “Neural networks for parameter estimation in microstructural mri: Application to a diffusion-relaxation model of white matter,” NeuroImage, vol. 244, p. 118601, 2021.
- J. Wasserthal, P. F. Neher, and K. H. Maier-Hein, “Tract orientation mapping for bundle-specific tractography,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part III 11, pp. 36–44, Springer, 2018.
- H. Li, Z. Liang, C. Zhang, R. Liu, J. Li, W. Zhang, D. Liang, B. Shen, X. Zhang, Y. Ge, et al., “Superdti: Ultrafast dti and fiber tractography with deep learning,” Magnetic resonance in medicine, vol. 86, no. 6, pp. 3334–3347, 2021.
- P. F. Neher, M. Götz, T. Norajitra, C. Weber, and K. H. Maier-Hein, “A machine learning based approach to fiber tractography using classifier voting,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part I 18, pp. 45–52, Springer, 2015.
- T. Gong, Q. Tong, H. He, Z. Li, and J. Zhong, “Robust diffusion parametric mapping of motion-corrupted data with a three-dimensional convolutional neural network,” arXiv preprint arXiv:1905.13075, 2019.
- T. Gong, Q. Tong, Z. Li, H. He, H. Zhang, and J. Zhong, “Deep learning-based method for reducing residual motion effects in diffusion parameter estimation,” Magnetic Resonance in Medicine, vol. 85, no. 4, pp. 2278–2293, 2021.
- V. Wegmayr, G. Giuliari, S. Holdener, and J. Buhmann, “Data-driven fiber tractography with neural networks,” in 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp. 1030–1033, IEEE, 2018.
- I. Hill, M. Palombo, M. Santin, F. Branzoli, A.-C. Philippe, D. Wassermann, M.-S. Aigrot, B. Stankoff, A. Baron-Van Evercooren, M. Felfli, et al., “Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination,” NeuroImage, vol. 224, p. 117425, 2021.
- L. Y. Cai, H. H. Lee, N. R. Newlin, C. I. Kerley, P. Kanakaraj, Q. Yang, G. W. Johnson, D. Moyer, K. G. Schilling, F. Rheault, et al., “Convolutional-recurrent neural networks approximate diffusion tractography from t1-weighted mri and associated anatomical context,” bioRxiv, pp. 2023–02, 2023.
- M. Zucchelli, S. Deslauriers-Gauthier, and R. Deriche, “Brain tissue microstructure characterization using dmri based autoencoder neural-networks,” in Computational Diffusion MRI: 12th International Workshop, CDMRI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings 12, pp. 48–57, Springer, 2021.
- V. Nath, K. Ramadass, K. G. Schilling, C. B. Hansen, R. Fick, S. K. Pathak, A. W. Anderson, and B. A. Landman, “Dw-mri microstructure model of models captured via single-shell bottleneck deep learning,” in Computational Diffusion MRI: International MICCAI Workshop, Lima, Peru, October 2020, pp. 147–157, Springer, 2021.
- R. L. Harms, F. Fritz, A. Tobisch, R. Goebel, and A. Roebroeck, “Robust and fast nonlinear optimization of diffusion mri microstructure models,” Neuroimage, vol. 155, pp. 82–96, 2017.
- I. O. Jelescu, J. Veraart, E. Fieremans, and D. S. Novikov, “Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue,” NMR in Biomedicine, vol. 29, no. 1, pp. 33–47, 2016.
- D. C. Alexander, P. L. Hubbard, M. G. Hall, E. A. Moore, M. Ptito, G. J. Parker, and T. B. Dyrby, “Orientationally invariant indices of axon diameter and density from diffusion mri,” Neuroimage, vol. 52, no. 4, pp. 1374–1389, 2010.
- D. C. Alexander, “A general framework for experiment design in diffusion mri and its application in measuring direct tissue-microstructure features,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 60, no. 2, pp. 439–448, 2008.
- G. Rensonnet, B. Scherrer, G. Girard, A. Jankovski, S. K. Warfield, B. Macq, J.-P. Thiran, and M. Taquet, “Towards microstructure fingerprinting: estimation of tissue properties from a dictionary of monte carlo diffusion mri simulations,” NeuroImage, vol. 184, pp. 964–980, 2019.
- A. Daducci, E. J. Canales-Rodríguez, H. Zhang, T. B. Dyrby, D. C. Alexander, and J.-P. Thiran, “Accelerated microstructure imaging via convex optimization (amico) from diffusion mri data,” Neuroimage, vol. 105, pp. 32–44, 2015.
- T. Gong, F. Grussu, C. A. Wheeler-Kingshott, D. C. Alexander, and H. Zhang, “Machine-learning-informed parameter estimation improves the reliability of spinal cord diffusion mri,” arXiv preprint arXiv:2301.12294, 2023.
- M. Mozumder, J. M. Pozo, S. Coelho, and A. F. Frangi, “Population-based bayesian regularization for microstructural diffusion mri with noddida,” Magnetic resonance in medicine, vol. 82, no. 4, pp. 1553–1565, 2019.
- M. Reisert, E. Kellner, B. Dhital, J. Hennig, and V. G. Kiselev, “Disentangling micro from mesostructure by diffusion mri: a bayesian approach,” NeuroImage, vol. 147, pp. 964–975, 2017.
- J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, and K. Kaczynski, “Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 53, no. 6, pp. 1432–1440, 2005.
- H. Zhang, T. Schneider, C. A. Wheeler-Kingshott, and D. C. Alexander, “Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain,” Neuroimage, vol. 61, no. 4, pp. 1000–1016, 2012.
- S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud, “A comprehensive analysis of deep regression,” IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 9, pp. 2065–2081, 2019.
- A. Faiyaz, M. Doyley, G. Schifitto, J. Zhong, and M. N. Uddin, “Single-shell noddi using dictionary-learner-estimated isotropic volume fraction,” NMR in Biomedicine, vol. 35, no. 2, p. e4628, 2022.
- S. Liu, Y. Liu, X. Xu, R. Chen, D. Liang, Q. Jin, H. Liu, G. Chen, and Y. Zhu, “Accelerated cardiac diffusion tensor imaging using deep neural network,” Physics in Medicine & Biology, vol. 68, no. 2, p. 025008, 2023.
- C. Ye, X. Li, and J. Chen, “A deep network for tissue microstructure estimation using modified lstm units,” Medical image analysis, vol. 55, pp. 49–64, 2019.
- C. Ye, “Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework,” in Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings 25, pp. 466–477, Springer, 2017.
- C. Ye, “Tissue microstructure estimation using a deep network inspired by a dictionary-based framework,” Medical image analysis, vol. 42, pp. 288–299, 2017.
- C. Ye, Y. Li, and X. Zeng, “An improved deep network for tissue microstructure estimation with uncertainty quantification,” Medical image analysis, vol. 61, p. 101650, 2020.
- M. P. Kaandorp, F. Zijlstra, C. Federau, and P. T. While, “Deep learning intravoxel incoherent motion modeling: Exploring the impact of training features and learning strategies,” Magnetic Resonance in Medicine, vol. 90, no. 1, pp. 312–328, 2023.
- S. C. Epstein, T. J. Bray, M. Hall-Craggs, and H. Zhang, “Choice of training label matters: how to best use deep learning for quantitative mri parameter estimation,” arXiv preprint arXiv:2205.05587, 2022.
- N. G. Gyori, M. Palombo, C. A. Clark, H. Zhang, and D. C. Alexander, “Training data distribution significantly impacts the estimation of tissue microstructure with machine learning,” Magnetic resonance in medicine, vol. 87, no. 2, pp. 932–947, 2022.
- J. P. de Almeida Martins, M. Nilsson, B. Lampinen, M. Palombo, C.-F. Westin, and F. Szczepankiewicz, “On the use of neural networks to fit high-d imensional microstructure models,” in Proceedings of the ISMRM, vol. 401, 2021.
- S. Jung, H. Lee, K. Ryu, J. E. Song, M. Park, W.-J. Moon, and D.-H. Kim, “Artificial neural network for multi-echo gradient echo–based myelin water fraction estimation,” Magnetic resonance in medicine, vol. 85, no. 1, pp. 380–389, 2021.
- E. K. Gibbons, K. K. Hodgson, A. S. Chaudhari, L. G. Richards, J. J. Majersik, G. Adluru, and E. V. DiBella, “Simultaneous noddi and gfa parameter map generation from subsampled q-space imaging using deep learning,” Magnetic resonance in medicine, vol. 81, no. 4, pp. 2399–2411, 2019.
- S. HashemizadehKolowri, R.-R. Chen, G. Adluru, and E. V. DiBella, “Jointly estimating parametric maps of multiple diffusion models from undersampled q-space data: A comparison of three deep learning approaches,” Magnetic Resonance in Medicine, vol. 87, no. 6, pp. 2957–2971, 2022.
- E. Aliotta, H. Nourzadeh, and S. H. Patel, “Extracting diffusion tensor fractional anisotropy and mean diffusivity from 3-direction dwi scans using deep learning,” Magnetic Resonance in Medicine, vol. 85, no. 2, pp. 845–854, 2021.
- T. Zheng, G. Yan, H. Li, W. Zheng, W. Shi, Y. Zhang, C. Ye, and D. Wu, “A microstructure estimation transformer inspired by sparse representation for diffusion mri,” Medical Image Analysis, vol. 86, p. 102788, 2023.
- D. Karimi, C. Jaimes, F. Machado-Rivas, L. Vasung, S. Khan, S. K. Warfield, and A. Gholipour, “Deep learning-based parameter estimation in fetal diffusion-weighted mri,” Neuroimage, vol. 243, p. 118482, 2021.
- D. Karimi, O. Afacan, C. Velasco-Annis, C. Jaimes, C. Rollins, S. Warfield, and A. Gholipour, “Robust estimation of the fetal brain architecture from in-utero diffusion-weighted imaging,” in 2020 ISMRM & SMRT Annual Meeting & Exhibition, 2020.
- E. Aliotta, H. Nourzadeh, J. Sanders, D. Muller, and D. B. Ennis, “Highly accelerated, model-free diffusion tensor mri reconstruction using neural networks,” Medical physics, vol. 46, no. 4, pp. 1581–1591, 2019.
- S. Aja-Fernández, C. Martín-Martín, Á. Planchuelo-Gómez, A. Faiyaz, M. N. Uddin, G. Schifitto, A. Tiwari, S. J. Shigwan, R. K. Singh, T. Zheng, et al., “Validation of deep learning techniques for quality augmentation in diffusion mri for clinical studies,” NeuroImage: Clinical, vol. 39, p. 103483, 2023.
- S. M. Smith et al., “Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data,” Neuroimage, vol. 31, no. 4, pp. 1487–1505, 2006.
- D. Karimi, L. Vasung, F. Machado-Rivas, C. Jaimes, S. Khan, and A. Gholipour, “Accurate parameter estimation in fetal diffusion-weighted mri-learning from fetal and newborn data,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VII 24, pp. 487–496, Springer, 2021.
- D. Karimi and A. Gholipour, “Atlas-powered deep learning (adl)-application to diffusion weighted mri,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 123–132, Springer, 2022.
- S. Skare, M. Hedehus, M. E. Moseley, and T.-Q. Li, “Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with mri,” Journal of magnetic resonance, vol. 147, no. 2, pp. 340–352, 2000.
- J. Park, W. Jung, E.-J. Choi, S.-H. Oh, J. Jang, D. Shin, H. An, and J. Lee, “Diffnet: diffusion parameter mapping network generalized for input diffusion gradient schemes and b-value,” IEEE Transactions on Medical Imaging, vol. 41, no. 2, pp. 491–499, 2021.
- I. Hill, M. Palombo, M. D. Santin, F. Branzoli, A.-C. Philippe, D. Wassermann, M.-S. Aigrot, B. Stankoff, H. Zhang, S. Lehericy, et al., “Deep neural network based framework for in-vivo axonal permeability estimation,” in Proceedings of the Joint Annual Meeting ISMRM-ESMRMB 2018, ISMRM (International Society for Magnetic Resonance in Medicine), 2018.
- C. Ye, “Learning-based ensemble average propagator estimation,” in Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20, pp. 593–601, Springer, 2017.
- F. Grussu, M. Battiston, M. Palombo, T. Schneider, C. A. G. Wheeler-Kingshott, and D. C. Alexander, “Deep learning model fitting for diffusion-relaxometry: a comparative study,” in Computational Diffusion MRI: International MICCAI Workshop, Lima, Peru, October 2020, pp. 159–172, Springer, 2021.
- C. M. Pirk, P. A. Gómez, I. Lipp, G. Buonincontri, M. Molina-Romero, A. Sekuboyina, D. Waldmannstetter, J. Dannenberg, S. Endt, A. Merola, et al., “Deep learning-based parameter mapping for joint relaxation and diffusion tensor mr fingerprinting,” in Medical Imaging with Deep Learning, pp. 638–654, PMLR, 2020.
- M. Bertleff, S. Domsch, S. Weingärtner, J. Zapp, K. O’Brien, M. Barth, and L. R. Schad, “Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 t,” NMR in Biomedicine, vol. 30, no. 12, p. e3833, 2017.
- C. S. Parker, A. Schroder, S. C. Epstein, J. Cole, D. C. Alexander, and H. Zhang, “Rician likelihood loss for quantitative mri using self-supervised deep learning,” arXiv preprint arXiv:2307.07072, 2023.
- L. Zhang, V. Vishnevskiy, A. Jakab, and O. Goksel, “Implicit modeling with uncertainty estimation for intravoxel incoherent motion imaging,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1003–1007, IEEE, 2019.
- J. Huang, P. F. Ferreira, L. Wang, Y. Wu, A. I. Aviles-Rivero, C.-B. Schonlieb, A. D. Scott, Z. Khalique, M. Dwornik, R. Rajakulasingam, et al., “Deep learning-based diffusion tensor cardiac magnetic resonance reconstruction: A comparison studies,” arXiv preprint arXiv:2304.00996, 2023.
- T. Goodwin-Allcock, T. Gong, R. Gray, P. Nachev, and H. Zhang, “Patch-cnn: Training data-efficient deep learning for high-fidelity diffusion tensor estimation from minimal diffusion protocols,” arXiv preprint arXiv:2307.01346, 2023.
- G. Chen, Y. Hong, K. M. Huynh, and P.-T. Yap, “Deep learning prediction of diffusion mri data with microstructure-sensitive loss functions,” Medical image analysis, vol. 85, p. 102742, 2023.
- C. Ye, Y. Qin, C. Liu, Y. Li, X. Zeng, and Z. Liu, “Super-resolved q-space deep learning,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22, pp. 582–589, Springer, 2019.
- Y. Li, Y. Qin, Z. Liu, and C. Ye, “Pretraining improves deep learning based tissue microstructure estimation,” in Computational Diffusion MRI: International MICCAI Workshop, Lima, Peru, October 2020, pp. 173–185, Springer, 2021.
- Z. Li, T. Gong, Z. Lin, H. He, Q. Tong, C. Li, Y. Sun, F. Yu, and J. Zhong, “Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network,” IEEE Access, vol. 7, pp. 71398–71411, 2019.
- Y. Masutani, “Noise level matching improves robustness of diffusion mri parameter inference by synthetic q-space learning,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 139–142, IEEE, 2019.
- Y. Masutani, T. Fujiwara, and K. Sasaki, “Synthetic q-space learning with mixture distribution noise for robust dki parameter inference,” in International Forum on Medical Imaging in Asia 2021, vol. 11792, pp. 181–185, SPIE, 2021.
- K. G. Schilling, V. Janve, Y. Gao, I. Stepniewska, B. A. Landman, and A. W. Anderson, “Histological validation of diffusion mri fiber orientation distributions and dispersion,” Neuroimage, vol. 165, pp. 200–221, 2018.
- K. Schilling, V. Janve, Y. Gao, I. Stepniewska, B. A. Landman, and A. W. Anderson, “Comparison of 3d orientation distribution functions measured with confocal microscopy and diffusion mri,” Neuroimage, vol. 129, pp. 185–197, 2016.
- V. Prčkovska, P. Rodrigues, A. Puigdellivol Sanchez, M. Ramos, M. Andorra, E. Martinez-Heras, C. Falcon, A. Prats-Galino, and P. Villoslada, “Reproducibility of the structural connectome reconstruction across diffusion methods,” Journal of Neuroimaging, vol. 26, no. 1, pp. 46–57, 2016.
- M. Bucci, M. L. Mandelli, J. I. Berman, B. Amirbekian, C. Nguyen, M. S. Berger, and R. G. Henry, “Quantifying diffusion mri tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods,” NeuroImage: Clinical, vol. 3, pp. 361–368, 2013.
- S. Peled, O. Friman, F. Jolesz, and C.-F. Westin, “Geometrically constrained two-tensor model for crossing tracts in dwi,” Magnetic resonance imaging, vol. 24, no. 9, pp. 1263–1270, 2006.
- D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and V. J. Wedeen, “High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 48, no. 4, pp. 577–582, 2002.
- B. Scherrer, M. Taquet, and S. K. Warfield, “Reliable selection of the number of fascicles in diffusion images by estimation of the generalization error,” in International Conference on Information Processing in Medical Imaging, pp. 742–753, Springer, 2013.
- T. Schultz, C.-F. Westin, and G. Kindlmann, “Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010: 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part I 13, pp. 674–681, Springer, 2010.
- J.-D. Tournier, F. Calamante, and A. Connelly, “Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution,” Neuroimage, vol. 35, no. 4, pp. 1459–1472, 2007.
- B. Jeurissen, J.-D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers, “Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion mri data,” NeuroImage, vol. 103, pp. 411–426, 2014.
- K. Patel, S. Groeschel, and T. Schultz, “Better fiber odfs from suboptimal data with autoencoder based regularization,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part III 11, pp. 55–62, Springer, 2018.
- A. Elaldi, N. Dey, H. Kim, and G. Gerig, “Equivariant spherical deconvolution: learning sparse orientation distribution functions from spherical data,” in Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27, pp. 267–278, Springer, 2021.
- A. Elaldi, G. Gerig, and N. Dey, “e(3)×so(3)𝑒3𝑠𝑜3e(3)\times so(3)italic_e ( 3 ) × italic_s italic_o ( 3 )-equivariant networks for spherical deconvolution in diffusion mri,” arXiv preprint arXiv:2304.06103, 2023.
- V. Nath, K. G. Schilling, P. Parvathaneni, C. B. Hansen, A. E. Hainline, Y. Huo, J. A. Blaber, I. Lyu, V. Janve, Y. Gao, et al., “Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted mri,” Magnetic resonance imaging, vol. 62, pp. 220–227, 2019.
- V. Nath, I. Lyu, K. G. Schilling, P. Parvathaneni, C. B. Hansen, Y. Huo, V. A. Janve, Y. Gao, I. Stepniewska, A. W. Anderson, et al., “Enabling multi-shell b-value generalizability of data-driven diffusion models with deep shore,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22, pp. 573–581, Springer, 2019.
- H. Kebiri, A. Gholipour, R. Lin, L. Vasung, D. Karimi, and M. Bach Cuadra, “Robust estimation of the microstructure of the early developing brain using deep learning,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 293–303, Springer, 2023.
- S. Koppers and D. Merhof, “Direct estimation of fiber orientations using deep learning in diffusion imaging,” in Machine Learning in Medical Imaging: 7th International Workshop, MLMI 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Proceedings 7, pp. 53–60, Springer, 2016.
- Z. Lin, T. Gong, K. Wang, Z. Li, H. He, Q. Tong, F. Yu, and J. Zhong, “Fast learning of fiber orientation distribution function for mr tractography using convolutional neural network,” Medical physics, vol. 46, no. 7, pp. 3101–3116, 2019.
- C. Ye and J. L. Prince, “Fiber orientation estimation guided by a deep network,” in Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I, pp. 575–583, Springer, 2017.
- D. Karimi, L. Vasung, C. Jaimes, F. Machado-Rivas, S. K. Warfield, and A. Gholipour, “Learning to estimate the fiber orientation distribution function from diffusion-weighted mri,” NeuroImage, vol. 239, p. 118316, 2021.
- S. Koppers, C. Haarburger, J. C. Edgar, and D. Merhof, “Reliable estimation of the number of compartments in diffusion mri,” in Bildverarbeitung für die Medizin 2017: Algorithmen-Systeme-Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg, pp. 203–208, Springer, 2017.
- S. Koppers, M. Friedrichs, and D. Merhof, “Reconstruction of diffusion anisotropies using 3d deep convolutional neural networks in diffusion imaging,” in Modeling, analysis, and visualization of anisotropy, pp. 393–404, Springer, 2017.
- T. Yao, N. Newlin, P. Kanakaraj, L. Y. Cai, K. Ramadass, K. Schilling, B. A. Landman, Y. Huo, et al., “A unified single-stage learning model for estimating fiber orientation distribution functions on heterogeneous multi-shell diffusion-weighted mri,” arXiv preprint arXiv:2303.16376, 2023.
- D. Karimi, L. Vasung, C. Jaimes, F. Machado-Rivas, S. Khan, S. K. Warfield, and A. Gholipour, “A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging,” Medical image analysis, vol. 72, p. 102129, 2021.
- T. Yao, F. Rheault, L. Y. Cai, Z. Asad, N. Newlin, C. Cui, R. Deng, K. Ramadass, A. Shafer, S. Resnick, et al., “Robust fiber odf estimation using deep constrained spherical deconvolution for diffusion mri,” arXiv preprint arXiv:2306.02900, 2023.
- J. Bartlett, C. Davey, L. Johnston, and J. Duan, “Recovering high-quality fods from a reduced number of diffusion-weighted images using a model-driven deep learning architecture,” arXiv preprint arXiv:2307.15273, 2023.
- T. Schultz, “Learning a reliable estimate of the number of fiber directions in diffusion mri,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012: 15th International Conference, Nice, France, October 1-5, 2012, Proceedings, Part III 15, pp. 493–500, Springer, 2012.
- M. Taquet, B. Scherrer, N. Boumal, B. Macq, and S. K. Warfield, “Estimation of a multi-fascicle model from single b-value data with a population-informed prior,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part I 16, pp. 695–702, Springer, 2013.
- V. Nath, S. K. Pathak, K. G. Schilling, W. Schneider, and B. A. Landman, “Deep learning estimation of multi-tissue constrained spherical deconvolution with limited single shell dw-mri,” in Medical Imaging 2020: Image Processing, vol. 11313, pp. 162–171, SPIE, 2020.
- I. O. Jelescu, M. Palombo, F. Bagnato, and K. G. Schilling, “Challenges for biophysical modeling of microstructure,” Journal of Neuroscience Methods, vol. 344, p. 108861, 2020.
- N. Perraudin, M. Defferrard, T. Kacprzak, and R. Sgier, “Deepsphere: Efficient spherical convolutional neural network with healpix sampling for cosmological applications,” Astronomy and Computing, vol. 27, pp. 130–146, 2019.
- C.-H. Yeh, D. K. Jones, X. Liang, M. Descoteaux, and A. Connelly, “Mapping structural connectivity using diffusion mri: Challenges and opportunities,” Journal of Magnetic Resonance Imaging, vol. 53, no. 6, pp. 1666–1682, 2021.
- F. Zhang, A. Daducci, Y. He, S. Schiavi, C. Seguin, R. Smith, C.-H. Yeh, T. Zhao, and L. J. O’Donnell, “Quantitative mapping of the brain’s structural connectivity using diffusion mri tractography: a review,” NeuroImage, p. 118870, 2022.
- A. Lemkaddem, D. Skiöldebrand, A. Dal Palú, J.-P. Thiran, and A. Daducci, “Global tractography with embedded anatomical priors for quantitative connectivity analysis,” Frontiers in neurology, vol. 5, p. 232, 2014.
- P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo fiber tractography using dt-mri data,” Magnetic resonance in medicine, vol. 44, no. 4, pp. 625–632, 2000.
- R. E. Smith, J.-D. Tournier, F. Calamante, and A. Connelly, “Anatomically-constrained tractography: improved diffusion mri streamlines tractography through effective use of anatomical information,” Neuroimage, vol. 62, no. 3, pp. 1924–1938, 2012.
- J.-F. Mangin, P. Fillard, Y. Cointepas, D. Le Bihan, V. Frouin, and C. Poupon, “Toward global tractography,” Neuroimage, vol. 80, pp. 290–296, 2013.
- H. Takemura, C. F. Caiafa, B. A. Wandell, and F. Pestilli, “Ensemble tractography,” PLoS computational biology, vol. 12, no. 2, p. e1004692, 2016.
- F.-C. Yeh, “Shape analysis of the human association pathways,” Neuroimage, vol. 223, p. 117329, 2020.
- R. Smith, D. Raffelt, J.-D. Tournier, and A. Connelly, “Quantitative streamlines tractography: methods and inter-subject normalisation,” Aperture Neuro, vol. 2, 2020.
- S. N. Sotiropoulos and A. Zalesky, “Building connectomes using diffusion mri: why, how and but,” NMR in Biomedicine, vol. 32, no. 4, p. e3752, 2019.
- J. Y.-M. Yang, C.-H. Yeh, C. Poupon, and F. Calamante, “Diffusion mri tractography for neurosurgery: the basics, current state, technical reliability and challenges,” Physics in Medicine & Biology, vol. 66, no. 15, p. 15TR01, 2021.
- F. Rheault, P. Poulin, A. V. Caron, E. St-Onge, and M. Descoteaux, “Common misconceptions, hidden biases and modern challenges of dmri tractography,” Journal of neural engineering, vol. 17, no. 1, p. 011001, 2020.
- K. G. Schilling, A. Daducci, K. Maier-Hein, C. Poupon, J.-C. Houde, V. Nath, A. W. Anderson, B. A. Landman, and M. Descoteaux, “Challenges in diffusion mri tractography–lessons learned from international benchmark competitions,” Magnetic resonance imaging, vol. 57, pp. 194–209, 2019.
- P. F. Neher, M.-A. Côté, J.-C. Houde, M. Descoteaux, and K. H. Maier-Hein, “Fiber tractography using machine learning,” Neuroimage, vol. 158, pp. 417–429, 2017.
- T. Sarwar, C. Seguin, K. Ramamohanarao, and A. Zalesky, “Towards deep learning for connectome mapping: A block decomposition framework,” NeuroImage, vol. 212, p. 116654, 2020.
- D. G. Duru and M. Ozkan, “Som based diffusion tensor mr analysis,” in 2007 5th International Symposium on Image and Signal Processing and Analysis, pp. 403–406, IEEE, 2007.
- D. G. Duru and M. Özkan, “Self-organizing maps for brain tractography in mri,” in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1509–1512, IEEE, 2013.
- O. de Lucena, Deep learning for brain analysis in MR imaging. PhD thesis, Master’s thesis, Universidade Estadual de Campinas, 2018.
- P. Poulin, F. Rheault, E. St-Onge, P.-M. Jodoin, and M. Descoteaux, “Bundle-wise deep tracker: Learning to track bundle-specific streamline paths,” Proc. of the Int. Society for Magnetic Resonance in medicine ISMRM-ESMRMB, 2018.
- I. Benou and T. Riklin Raviv, “Deeptract: A probabilistic deep learning framework for white matter fiber tractography,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22, pp. 626–635, Springer, 2019.
- V. Wegmayr and J. M. Buhmann, “Entrack: Probabilistic spherical regression with entropy regularization for fiber tractography,” International Journal of Computer Vision, vol. 129, pp. 656–680, 2021.
- P. Poulin, M.-A. Côté, J.-C. Houde, L. Petit, P. F. Neher, K. H. Maier-Hein, H. Larochelle, and M. Descoteaux, “Learn to track: deep learning for tractography,” in Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20, pp. 540–547, Springer, 2017.
- A. Théberge, C. Desrosiers, M. Descoteaux, and P.-M. Jodoin, “Track-to-learn: A general framework for tractography with deep reinforcement learning,” Medical Image Analysis, vol. 72, p. 102093, 2021.
- D. Jörgens, Ö. Smedby, and R. Moreno, “Learning a single step of streamline tractography based on neural networks,” in Computational Diffusion MRI: MICCAI Workshop, Québec, Canada, September 2017, pp. 103–116, Springer, 2018.
- K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.
- K. H. Maier-Hein, P. Neher, J.-C. Houde, M.-A. Côté, E. Garyfallidis, J. Zhong, M. Chamberland, F.-C. Yeh, Y.-C. Lin, Q. Ji, et al., “Tractography-based connectomes are dominated by false-positive connections,” BioRxiv, p. 084137, 2016.
- F. Rheault, A. De Benedictis, A. Daducci, C. Maffei, C. M. Tax, D. Romascano, E. Caverzasi, F. C. Morency, F. Corrivetti, F. Pestilli, et al., “Tractostorm: The what, why, and how of tractography dissection reproducibility,” Human brain mapping, vol. 41, no. 7, pp. 1859–1874, 2020.
- K. G. Schilling et al., “Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?,” NeuroImage, vol. 243, p. 118502, 2021.
- B. Wilkins, N. Lee, and M. Singh, “Development and evaluation of a simulated fibercup phantom,” in International Symposium on Magnetic Resonance in Medicine (ISMRM’12), p. 1938, 2012.
- P. F. Neher, F. B. Laun, B. Stieltjes, and K. H. Maier-Hein, “Fiberfox: facilitating the creation of realistic white matter software phantoms,” Magnetic resonance in medicine, vol. 72, no. 5, pp. 1460–1470, 2014.
- C. Poupon, L. Laribiere, G. Tournier, J. Bernard, D. Fournier, P. Fillard, M. Descoteaux, and J.-F. Mangin, “A diffusion hardware phantom looking like a coronal brain slice,” in Proceedings of the international society for magnetic resonance in medicine, vol. 18, p. 581, 2010.
- P. Fillard, M. Descoteaux, A. Goh, S. Gouttard, B. Jeurissen, J. Malcolm, A. Ramirez-Manzanares, M. Reisert, K. Sakaie, F. Tensaouti, et al., “Quantitative evaluation of 10 tractography algorithms on a realistic diffusion mr phantom,” Neuroimage, vol. 56, no. 1, pp. 220–234, 2011.
- F. L. Sinzinger and R. Moreno, “Reinforcement learning based tractography with so (3) equivariant agents,” in Geometric Deep Learning in Medical Image Analysis (Extended abstracts), 2022.
- T. Wanyan, L. Liu, and E. Garyfallidis, “Tractography using reinforcement learning and adaptive-expanding graphs,” in International symposium on biomedical imaging, 2018.
- M. Reisert, V. A. Coenen, C. Kaller, K. Egger, and H. Skibbe, “Hamlet: hierarchical harmonic filters for learning tracts from diffusion mri,” arXiv preprint arXiv:1807.01068, 2018.
- D. N. Bullock, E. A. Hayday, M. D. Grier, W. Tang, F. Pestilli, and S. R. Heilbronner, “A taxonomy of the brain’s white matter: twenty-one major tracts for the 21st century,” Cerebral Cortex, vol. 32, no. 20, pp. 4524–4548, 2022.
- S. Wakana, H. Jiang, L. M. Nagae-Poetscher, P. C. Van Zijl, and S. Mori, “Fiber tract–based atlas of human white matter anatomy,” Radiology, vol. 230, no. 1, pp. 77–87, 2004.
- V. Wycoco, M. Shroff, S. Sudhakar, and W. Lee, “White matter anatomy: what the radiologist needs to know,” Neuroimaging Clinics, vol. 23, no. 2, pp. 197–216, 2013.
- K. Kamada, T. Todo, Y. Masutani, S. Aoki, K. Ino, T. Takano, T. Kirino, N. Kawahara, and A. Morita, “Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation,” Journal of neurosurgery, vol. 102, no. 4, pp. 664–672, 2005.
- M. F. Glasser and J. K. Rilling, “Dti tractography of the human brain’s language pathways,” Cerebral cortex, vol. 18, no. 11, pp. 2471–2482, 2008.
- E. J. Bubb, C. Metzler-Baddeley, and J. P. Aggleton, “The cingulum bundle: anatomy, function, and dysfunction,” Neuroscience & Biobehavioral Reviews, vol. 92, pp. 104–127, 2018.
- L. Zhuang, W. Wen, W. Zhu, J. Trollor, N. Kochan, J. Crawford, S. Reppermund, H. Brodaty, and P. Sachdev, “White matter integrity in mild cognitive impairment: a tract-based spatial statistics study,” Neuroimage, vol. 53, no. 1, pp. 16–25, 2010.
- S. Wakana, A. Caprihan, M. M. Panzenboeck, J. H. Fallon, M. Perry, R. L. Gollub, K. Hua, J. Zhang, H. Jiang, P. Dubey, et al., “Reproducibility of quantitative tractography methods applied to cerebral white matter,” Neuroimage, vol. 36, no. 3, pp. 630–644, 2007.
- R. O. Suarez, O. Commowick, S. P. Prabhu, and S. K. Warfield, “Automated delineation of white matter fiber tracts with a multiple region-of-interest approach,” Neuroimage, vol. 59, no. 4, pp. 3690–3700, 2012.
- A. Yendiki et al., “Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy,” Frontiers in neuroinformatics, vol. 5, p. 23, 2011.
- S. Warrington, K. L. Bryant, A. A. Khrapitchev, J. Sallet, M. Charquero-Ballester, G. Douaud, S. Jbabdi, R. B. Mars, and S. N. Sotiropoulos, “Xtract-standardised protocols for automated tractography in the human and macaque brain,” Neuroimage, vol. 217, p. 116923, 2020.
- F. Zhang, S. C. Karayumak, N. Hoffmann, Y. Rathi, A. J. Golby, and L. J. O’Donnell, “Deep white matter analysis (deepwma): Fast and consistent tractography segmentation,” Medical Image Analysis, vol. 65, p. 101761, 2020.
- F. Liu, J. Feng, G. Chen, Y. Wu, Y. Hong, P.-T. Yap, and D. Shen, “Deepbundle: fiber bundle parcellation with graph convolution neural networks,” in Graph Learning in Medical Imaging: First International Workshop, GLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 1, pp. 88–95, Springer, 2019.
- P. D. N. Lam, G. Belhomme, J. Ferrall, B. Patterson, M. Styner, and J. C. Prieto, “Trafic: fiber tract classification using deep learning,” in Medical Imaging 2018: Image Processing, vol. 10574, pp. 257–265, SPIE, 2018.
- T. Gupta, S. M. Patil, M. Tailor, D. Thapar, and A. Nigam, “Brainsegnet: A segmentation network for human brain fiber tractography data into anatomically meaningful clusters,” arXiv preprint arXiv:1710.05158, 2017.
- V. Gupta, S. I. Thomopoulos, F. M. Rashid, and P. M. Thompson, “Fibernet: An ensemble deep learning framework for clustering white matter fibers,” in Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20, pp. 548–555, Springer, 2017.
- V. Gupta, S. I. Thomopoulos, C. K. Corbin, F. Rashid, and P. M. Thompson, “Fibernet 2.0: an automatic neural network based tool for clustering white matter fibers in the brain,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 708–711, IEEE, 2018.
- H. Xu, M. Dong, M.-H. Lee, N. O’Hara, E. Asano, and J.-W. Jeong, “Objective detection of eloquent axonal pathways to minimize postoperative deficits in pediatric epilepsy surgery using diffusion tractography and convolutional neural networks,” IEEE transactions on medical imaging, vol. 38, no. 8, pp. 1910–1922, 2019.
- L. J. O’Donnell and C.-F. Westin, “Automatic tractography segmentation using a high-dimensional white matter atlas,” IEEE transactions on medical imaging, vol. 26, no. 11, pp. 1562–1575, 2007.
- M. Dayan, V.-M. Katsageorgiou, L. Dodero, V. Murino, and D. Sona, “Unsupervised detection of white matter fiber bundles with stochastic neural networks,” in 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3513–3517, IEEE, 2018.
- R. R. Jha, S. Patil, A. Nigam, and A. Bhavsar, “Fs2net: fiber structural similarity network (fs2net) for rotation invariant brain tractography segmentation using stacked lstm based siamese network,” in Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part II 18, pp. 459–469, Springer, 2019.
- Y. Chen, C. Zhang, T. Xue, Y. Song, N. Makris, Y. Rathi, W. Cai, F. Zhang, and L. J. O’Donnell, “Deep fiber clustering: Anatomically informed fiber clustering with self-supervised deep learning for fast and effective tractography parcellation,” NeuroImage, vol. 273, p. 120086, 2023.
- W. Liu, Q. Lu, Z. Zhuo, Y. Li, Y. Duan, P. Yu, L. Qu, C. Ye, and Y. Liu, “Volumetric segmentation of white matter tracts with label embedding,” Neuroimage, vol. 250, p. 118934, 2022.
- T. Xue, F. Zhang, C. Zhang, Y. Chen, Y. Song, A. J. Golby, N. Makris, Y. Rathi, W. Cai, and L. J. O’Donnell, “Superficial white matter analysis: An efficient point-cloud-based deep learning framework with supervised contrastive learning for consistent tractography parcellation across populations and dmri acquisitions,” Medical Image Analysis, vol. 85, p. 102759, 2023.
- V. Siless et al., “Anatomicuts: Hierarchical clustering of tractography streamlines based on anatomical similarity,” NeuroImage, vol. 166, pp. 32–45, 2018.
- T. Xue, Y. Chen, C. Zhang, A. J. Golby, N. Makris, Y. Rathi, W. Cai, F. Zhang, and L. J. O’Donnell, “Tractcloud: Registration-free tractography parcellation with a novel local-global streamline point cloud representation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 409–419, Springer, 2023.
- L. Zöllei, C. Jaimes, E. Saliba, P. E. Grant, and A. Yendiki, “Tracts constrained by underlying infant anatomy (traculina): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain,” Neuroimage, vol. 199, pp. 1–17, 2019.
- K. Hua, J. Zhang, S. Wakana, H. Jiang, X. Li, D. S. Reich, P. A. Calabresi, J. J. Pekar, P. C. van Zijl, and S. Mori, “Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification,” Neuroimage, vol. 39, no. 1, pp. 336–347, 2008.
- S. Mukherjee, N. Paquette, M. D. Nelson, Y. Wang, J. Wallace, A. Panigrahy, and N. Lepore, “Deep-learning based tractography for neonates,” in 16th International Symposium on Medical Information Processing and Analysis, vol. 11583, pp. 85–91, SPIE, 2020.
- Q. Lu, Y. Li, and C. Ye, “Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks,” Medical Image Analysis, vol. 72, p. 102094, 2021.
- O. Lucena, P. Borges, J. Cardoso, K. Ashkan, R. Sparks, and S. Ourselin, “Informative and reliable tract segmentation for preoperative planning,” Frontiers in Radiology, vol. 2, p. 866974, 2022.
- O. Lucena, J. P. Lavrador, H. Irzan, C. Semedo, P. Borges, F. Vergani, A. Granados, R. Sparks, K. Ashkan, and S. Ourselin, “Assessing informative tract segmentation and ntms for pre-operative planning,” Journal of Neuroscience Methods, vol. 396, p. 109933, 2023.
- H. Kebiri, A. Gholipour, M. B. Cuadra, and D. Karimi, “Direct segmentation of brain white matter tracts in diffusion mri,” arXiv preprint arXiv:2307.02223, 2023.
- B. Li, M. De Groot, R. M. Steketee, R. Meijboom, M. Smits, M. W. Vernooij, M. A. Ikram, J. Liu, W. J. Niessen, and E. E. Bron, “Neuro4neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging,” Neuroimage, vol. 218, p. 116993, 2020.
- H. Xu, T. Xue, D. Liu, F. Zhang, C.-F. Westin, R. Kikinis, L. J. O’Donnell, and W. Cai, “A registration-and uncertainty-based framework for white matter tract segmentation with only one annotated subject,” in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5, IEEE, 2023.
- E. Garyfallidis et al., “Recognition of white matter bundles using local and global streamline-based registration and clustering,” NeuroImage, vol. 170, pp. 283–295, 2018.
- N. Labra et al., “Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas,” Neuroinformatics, vol. 15, no. 1, pp. 71–86, 2017.
- J. D. Clayden, A. J. Storkey, and M. E. Bastin, “A probabilistic model-based approach to consistent white matter tract segmentation,” IEEE transactions on medical imaging, vol. 26, no. 11, pp. 1555–1561, 2007.
- V. Siless et al., “Registration-free analysis of diffusion mri tractography data across subjects through the human lifespan,” NeuroImage, vol. 214, p. 116703, 2020.
- D. Wassermann, L. Bloy, E. Kanterakis, R. Verma, and R. Deriche, “Unsupervised white matter fiber clustering and tract probability map generation: Applications of a gaussian process framework for white matter fibers,” NeuroImage, vol. 51, no. 1, pp. 228–241, 2010.
- E. Garyfallidis, M. Brett, M. M. Correia, G. B. Williams, and I. Nimmo-Smith, “Quickbundles, a method for tractography simplification,” Frontiers in neuroscience, vol. 6, p. 175, 2012.
- A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin, “Clustering fiber traces using normalized cuts,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004: 7th International Conference, Saint-Malo, France, September 26-29, 2004. Proceedings, Part I 7, pp. 368–375, Springer, 2004.
- A. Vázquez, N. López-López, A. Sánchez, J. Houenou, C. Poupon, J.-F. Mangin, C. Hernández, and P. Guevara, “Ffclust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity,” NeuroImage, vol. 220, p. 117070, 2020.
- M. Maddah, L. Zollei, W. E. L. Grimson, C.-F. Westin, and W. M. Wells, “A mathematical framework for incorporating anatomical knowledge in dt-mri analysis,” in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 105–108, IEEE, 2008.
- H. Li, Z. Xue, L. Guo, T. Liu, J. Hunter, and S. T. Wong, “A hybrid approach to automatic clustering of white matter fibers,” NeuroImage, vol. 49, no. 2, pp. 1249–1258, 2010.
- D. Wassermann, N. Makris, Y. Rathi, M. Shenton, R. Kikinis, M. Kubicki, and C.-F. Westin, “The white matter query language: a novel approach for describing human white matter anatomy,” Brain Structure and Function, vol. 221, pp. 4705–4721, 2016.
- F. Zhang, I. Norton, W. Cai, Y. Song, W. M. Wells, and L. J. O’Donnell, “Comparison between two white matter segmentation strategies: an investigation into white matter segmentation consistency,” in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 796–799, IEEE, 2017.
- B. Tunç, W. A. Parker, M. Ingalhalikar, and R. Verma, “Automated tract extraction via atlas based adaptive clustering,” Neuroimage, vol. 102, pp. 596–607, 2014.
- B. Tunç, M. Ingalhalikar, D. Parker, J. Lecoeur, N. Singh, R. L. Wolf, L. Macyszyn, S. Brem, and R. Verma, “Individualized map of white matter pathways: connectivity-based paradigm for neurosurgical planning,” Neurosurgery, vol. 79, no. 4, p. 568, 2016.
- V. J. Sydnor, A. M. Rivas-Grajales, A. E. Lyall, F. Zhang, S. Bouix, S. Karmacharya, M. E. Shenton, C.-F. Westin, N. Makris, D. Wassermann, et al., “A comparison of three fiber tract delineation methods and their impact on white matter analysis,” Neuroimage, vol. 178, pp. 318–331, 2018.
- M. Catani and M. T. De Schotten, “A diffusion tensor imaging tractography atlas for virtual in vivo dissections,” cortex, vol. 44, no. 8, pp. 1105–1132, 2008.
- L. J. O’Donnell, A. J. Golby, and C.-F. Westin, “Fiber clustering versus the parcellation-based connectome,” NeuroImage, vol. 80, pp. 283–289, 2013.
- A. Chekir, M. Descoteaux, E. Garyfallidis, M.-A. Côté, and F. O. Boumghar, “A hybrid approach for optimal automatic segmentation of white matter tracts in hardi,” in 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), pp. 177–180, IEEE, 2014.
- Q. Xu, A. W. Anderson, J. C. Gore, and Z. Ding, “Gray matter parcellation constrained full brain fiber bundling with diffusion tensor imaging,” Medical Physics, vol. 40, no. 7, p. 072301, 2013.
- P.-L. Bazin et al., “Direct segmentation of the major white matter tracts in diffusion tensor images,” Neuroimage, vol. 58, no. 2, pp. 458–468, 2011.
- N. Ratnarajah and A. Qiu, “Multi-label segmentation of white matter structures: application to neonatal brains,” NeuroImage, vol. 102, pp. 913–922, 2014.
- C. Lenglet, M. Rousson, and R. Deriche, “Dti segmentation by statistical surface evolution,” IEEE Transactions on Medical Imaging, vol. 25, no. 6, pp. 685–700, 2006.
- L. Jonasson, X. Bresson, P. Hagmann, O. Cuisenaire, R. Meuli, and J.-P. Thiran, “White matter fiber tract segmentation in dt-mri using geometric flows,” Medical Image Analysis, vol. 9, no. 3, pp. 223–236, 2005.
- W. Guo, Y. Chen, and Q. Zeng, “A geometric flow-based approach for diffusion tensor image segmentation,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366, no. 1874, pp. 2279–2292, 2008.
- I. Eckstein et al., “Active fibers: Matching deformable tract templates to diffusion tensor images,” Neuroimage, vol. 47, pp. T82–T89, 2009.
- X. Dong et al., “Multimodality white matter tract segmentation using cnn,” in Proceedings of the ACM Turing Celebration Conference-China, pp. 1–8, 2019.
- J. Wasserthal, P. F. Neher, D. Hirjak, and K. H. Maier-Hein, “Combined tract segmentation and orientation mapping for bundle-specific tractography,” Medical image analysis, vol. 58, p. 101559, 2019.
- B. Li, M. de Groot, M. W. Vernooij, M. A. Ikram, W. J. Niessen, and E. E. Bron, “Reproducible white matter tract segmentation using 3d u-net on a large-scale dti dataset,” in Machine Learning in Medical Imaging: 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 9, pp. 205–213, Springer, 2018.
- Q. Lu and C. Ye, “Knowledge transfer for few-shot segmentation of novel white matter tracts,” in Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27, pp. 216–227, Springer, 2021.
- P. Guevara, D. Duclap, C. Poupon, L. Marrakchi-Kacem, P. Fillard, D. Le Bihan, M. Leboyer, J. Houenou, and J.-F. Mangin, “Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas,” Neuroimage, vol. 61, no. 4, pp. 1083–1099, 2012.
- C. Román, M. Guevara, R. Valenzuela, M. Figueroa, J. Houenou, D. Duclap, C. Poupon, J.-F. Mangin, and P. Guevara, “Clustering of whole-brain white matter short association bundles using hardi data,” Frontiers in neuroinformatics, vol. 11, p. 73, 2017.
- A. Vázquez, N. López-López, J. Houenou, C. Poupon, J.-F. Mangin, S. Ladra, and P. Guevara, “Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information,” BioMedical Engineering OnLine, vol. 19, no. 1, pp. 1–24, 2020.
- M. Guevara, P. Guevara, C. Román, and J.-F. Mangin, “Superficial white matter: A review on the dmri analysis methods and applications,” Neuroimage, vol. 212, p. 116673, 2020.
- T. Xue, F. Zhang, C. Zhang, Y. Chen, Y. Song, N. Makris, Y. Rathi, W. Cai, and L. J. O’Donnell, “Supwma: consistent and efficient tractography parcellation of superficial white matter with deep learning,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5, IEEE, 2022.
- S. M. Smith, G. Kindlmann, and S. Jbabdi, “Cross-subject comparison of local diffusion mri parameters,” in Diffusion MRI, pp. 209–239, Elsevier, 2014.
- L. Pini et al., “Brain atrophy in alzheimer’s disease and aging,” Ageing research reviews, vol. 30, pp. 25–48, 2016.
- C. E. Sexton et al., “A meta-analysis of diffusion tensor imaging in mild cognitive impairment and alzheimer’s disease,” Neurobiology of aging, vol. 32, no. 12, pp. 2322–e5, 2011.
- J. Ashburner and K. J. Friston, “Voxel-based morphometry—the methods,” Neuroimage, vol. 11, no. 6, pp. 805–821, 2000.
- E. Pagani et al., “A method for obtaining tract-specific diffusion tensor mri measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis,” Neuroimage, vol. 26, no. 1, pp. 258–265, 2005.
- T. Madhyastha et al., “Longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging,” Human brain mapping, vol. 35, no. 9, pp. 4544–4555, 2014.
- R. A. Edden and D. K. Jones, “Spatial and orientational heterogeneity in the statistical sensitivity of skeleton-based analyses of diffusion tensor mr imaging data,” Journal of neuroscience methods, vol. 201, no. 1, pp. 213–219, 2011.
- A. Zalesky, “Moderating registration misalignment in voxelwise comparisons of dti data: a performance evaluation of skeleton projection,” Magnetic resonance imaging, vol. 29, no. 1, pp. 111–125, 2011.
- D. Raffelt, J.-D. Tournier, J. Fripp, S. Crozier, A. Connelly, and O. Salvado, “Symmetric diffeomorphic registration of fibre orientation distributions,” Neuroimage, vol. 56, no. 3, pp. 1171–1180, 2011.
- H. Zhang, P. A. Yushkevich, D. C. Alexander, and J. C. Gee, “Deformable registration of diffusion tensor mr images with explicit orientation optimization,” Medical image analysis, vol. 10, no. 5, pp. 764–785, 2006.
- I. Grigorescu, A. Uus, D. Christiaens, L. Cordero-Grande, J. Hutter, A. D. Edwards, J. V. Hajnal, M. Modat, and M. Deprez, “Diffusion tensor driven image registration: a deep learning approach,” in International Workshop on Biomedical Image Registration, pp. 131–140, Springer, 2020.
- F. Zhang, W. M. Wells, and L. J. O’Donnell, “Deep diffusion mri registration (ddmreg): a deep learning method for diffusion mri registration,” IEEE Transactions on Medical Imaging, vol. 41, no. 6, pp. 1454–1467, 2021.
- J. J. Bouza, C.-H. Yang, and B. C. Vemuri, “Geometric deep learning for unsupervised registration of diffusion magnetic resonance images,” in International Conference on Information Processing in Medical Imaging, pp. 563–575, Springer, 2023.
- I. Grigorescu, A. Uus, D. Christiaens, L. Cordero-Grande, J. Hutter, D. Batalle, A. David Edwards, J. V. Hajnal, M. Modat, and M. Deprez, “Attention-driven multi-channel deformable registration of structural and microstructural neonatal data,” in International Workshop on Preterm, Perinatal and Paediatric Image Analysis, pp. 71–81, Springer, 2022.
- G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “Voxelmorph: a learning framework for deformable medical image registration,” IEEE transactions on medical imaging, vol. 38, no. 8, pp. 1788–1800, 2019.
- D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, “Spatial transformations of diffusion tensor magnetic resonance images,” IEEE transactions on medical imaging, vol. 20, no. 11, pp. 1131–1139, 2001.
- G. Prasad, S. H. Joshi, N. Jahanshad, J. Villalon-Reina, I. Aganj, C. Lenglet, G. Sapiro, K. L. McMahon, G. I. de Zubicaray, N. G. Martin, et al., “Automatic clustering and population analysis of white matter tracts using maximum density paths,” Neuroimage, vol. 97, pp. 284–295, 2014.
- Y. Jin, Y. Shi, L. Zhan, B. A. Gutman, G. I. de Zubicaray, K. L. McMahon, M. J. Wright, A. W. Toga, and P. M. Thompson, “Automatic clustering of white matter fibers in brain diffusion mri with an application to genetics,” Neuroimage, vol. 100, pp. 75–90, 2014.
- F. Zhang, P. Savadjiev, W. Cai, Y. Song, Y. Rathi, B. Tunç, D. Parker, T. Kapur, R. T. Schultz, N. Makris, et al., “Whole brain white matter connectivity analysis using machine learning: an application to autism,” Neuroimage, vol. 172, pp. 826–837, 2018.
- B. Li, W. J. Niessen, S. Klein, M. de Groot, M. A. Ikram, M. W. Vernooij, and E. E. Bron, “A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22, pp. 645–653, Springer, 2019.
- B. Li, W. J. Niessen, S. Klein, M. de Groot, M. A. Ikram, M. W. Vernooij, and E. E. Bron, “Longitudinal diffusion mri analysis using segis-net: a single-step deep-learning framework for simultaneous segmentation and registration,” NeuroImage, vol. 235, p. 118004, 2021.
- B. Li, W. J. Niessen, S. Klein, M. A. Ikram, M. W. Vernooij, and E. E. Bron, “Learning unbiased group-wise registration (lugr) and joint segmentation: evaluation on longitudinal diffusion mri,” in Medical Imaging 2021: Image Processing, vol. 11596, pp. 136–144, SPIE, 2021.
- D. Karimi, H. Kebiri, and A. Gholipour, “Tbss++: A novel computational method for tract-based spatial statistics,” bioRxiv, pp. 2023–07, 2023.
- M. Chamberland, S. Genc, C. M. Tax, D. Shastin, K. Koller, E. P. Raven, A. Cunningham, J. Doherty, M. B. van den Bree, G. D. Parker, et al., “Detecting microstructural deviations in individuals with deep diffusion mri tractometry,” Nature computational science, vol. 1, no. 9, pp. 598–606, 2021.
- S. Qi, S. Meesters, K. Nicolay, B. M. ter Haar Romeny, and P. Ossenblok, “The influence of construction methodology on structural brain network measures: A review,” Journal of neuroscience methods, vol. 253, pp. 170–182, 2015.
- Y. Wen, L. He, K. M. von Deneen, and Y. Lu, “Brain tissue classification based on dti using an improved fuzzy c-means algorithm with spatial constraints,” Magnetic Resonance Imaging, vol. 31, no. 9, pp. 1623–1630, 2013.
- P.-T. Yap, Y. Zhang, and D. Shen, “Brain tissue segmentation based on diffusion mri using l0 sparse-group representation classification,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 132–139, Springer, 2015.
- A. Ciritsis, A. Boss, and C. Rossi, “Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning,” NMR in Biomedicine, vol. 31, no. 7, p. e3931, 2018.
- S. Schnell, D. Saur, B. Kreher, J. Hennig, H. Burkhardt, and V. G. Kiselev, “Fully automated classification of hardi in vivo data using a support vector machine,” NeuroImage, vol. 46, no. 3, pp. 642–651, 2009.
- A. Vasilev, V. Golkov, M. Meissner, I. Lipp, E. Sgarlata, V. Tomassini, D. K. Jones, and D. Cremers, “q-space novelty detection with variational autoencoders,” in Computational Diffusion MRI: MICCAI Workshop, Shenzhen, China, October 2019, pp. 113–124, Springer, 2020.
- F. Zhang, A. Breger, K. I. K. Cho, L. Ning, C.-F. Westin, L. J. O’Donnell, and O. Pasternak, “Deep learning based segmentation of brain tissue from diffusion mri,” NeuroImage, vol. 233, p. 117934, 2021.
- F. Zhang, A. Breger, L. Ning, C.-F. Westin, L. O’Donnell, and O. Pasternak, “Deep learning based brain tissue segmentation from novel diffusion kurtosis imaging features,” in Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2020.
- W. Zhang, R. Li, H. Deng, L. Wang, W. Lin, S. Ji, and D. Shen, “Deep convolutional neural networks for multi-modality isointense infant brain image segmentation,” NeuroImage, vol. 108, pp. 214–224, 2015.
- R. I. Reid, Z. Nedelska, C. G. Schwarz, C. Ward, C. R. Jack, and A. D. N. Initiative, “Diffusion specific segmentation: skull stripping with diffusion mri data alone,” in Computational Diffusion MRI: MICCAI Workshop, Québec, Canada, September 2017, pp. 67–80, Springer, 2018.
- X. Wang, X.-H. Li, J. W. Cho, B. E. Russ, N. Rajamani, A. Omelchenko, L. Ai, A. Korchmaros, S. Sawiak, R. A. Benn, et al., “U-net model for brain extraction: Trained on humans for transfer to non-human primates,” Neuroimage, vol. 235, p. 118001, 2021.
- D. Karimi, H. Dou, S. K. Warfield, and A. Gholipour, “Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis,” Medical image analysis, vol. 65, p. 101759, 2020.
- R. Faghihpirayesh, D. Karimi, D. Erdoğmuş, and A. Gholipour, “Fetal-bet: Brain extraction tool for fetal mri,” arXiv preprint arXiv:2310.01523, 2023.
- C. Murray, O. Oladosu, M. Joshi, S. Kolind, J. Oh, and Y. Zhang, “Neural network algorithms predict new diffusion mri data for multi-compartmental analysis of brain microstructure in a clinical setting,” Magnetic Resonance Imaging, vol. 102, pp. 9–19, 2023.
- S. Koppers, C. Haarburger, and D. Merhof, “Diffusion mri signal augmentation: from single shell to multi shell with deep learning,” in Computational Diffusion MRI: MICCAI Workshop, Athens, Greece, October 2016 19, pp. 61–70, Springer, 2017.
- S. Yin, Z. Zhang, Q. Peng, and X. You, “Fast and accurate reconstruction of hardi using a 1d encoder-decoder convolutional network,” arXiv preprint arXiv:1903.09272, 2019.
- S. Koppers and D. Merhof, “Enhancing diffusion signal augmentation using spherical convolutions,” in Computational Diffusion MRI: International MICCAI Workshop, Lima, Peru, October 2020, pp. 189–200, Springer, 2021.
- M. Lyon, P. Armitage, and M. A. Álvarez, “Spatio-angular convolutions for super-resolution in diffusion mri,” arXiv preprint arXiv:2306.00854, 2023.
- M. Lyon, P. Armitage, and M. A. Álvarez, “Angular super-resolution in diffusion mri with a 3d recurrent convolutional autoencoder,” in International Conference on Medical Imaging with Deep Learning, pp. 834–846, PMLR, 2022.
- M. Ren, H. Kim, N. Dey, and G. Gerig, “Q-space conditioned translation networks for directional synthesis of diffusion weighted images from multi-modal structural mri,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VII 24, pp. 530–540, Springer, 2021.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
- N. M. Elsaid and Y.-C. Wu, “Super-resolution diffusion tensor imaging using srcnn: a feasibility study,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2830–2834, IEEE, 2019.
- Q. Tian, Z. Li, Q. Fan, C. Ngamsombat, Y. Hu, C. Liao, F. Wang, K. Setsompop, J. R. Polimeni, B. Bilgic, et al., “Srdti: Deep learning-based super-resolution for diffusion tensor mri,” arXiv preprint arXiv:2102.09069, 2021.
- R. Zeng, J. Lv, H. Wang, L. Zhou, M. Barnett, F. Calamante, and C. Wang, “Fod-net: A deep learning method for fiber orientation distribution angular super resolution,” Medical Image Analysis, vol. 79, p. 102431, 2022.
- O. Lucena, S. B. Vos, V. Vakharia, J. Duncan, K. Ashkan, R. Sparks, and S. Ourselin, “Enhancing the estimation of fiber orientation distributions using convolutional neural networks,” Computers in Biology and Medicine, vol. 135, p. 104643, 2021.
- R. Tanno, D. E. Worrall, A. Ghosh, E. Kaden, S. N. Sotiropoulos, A. Criminisi, and D. C. Alexander, “Bayesian image quality transfer with cnns: exploring uncertainty in dmri super-resolution,” in Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I 20, pp. 611–619, Springer, 2017.
- Y. Qin, Z. Liu, C. Liu, Y. Li, X. Zeng, and C. Ye, “Super-resolved q-space deep learning with uncertainty quantification,” Medical Image Analysis, vol. 67, p. 101885, 2021.
- T. Spears and P. T. Fletcher, “Learning spatially-continuous fiber orientation functions,” arXiv preprint arXiv:2312.05721, 2023.
- D. C. Alexander, D. Zikic, J. Zhang, H. Zhang, and A. Criminisi, “Image quality transfer via random forest regression: applications in diffusion mri,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14-18, 2014, Proceedings, Part III 17, pp. 225–232, Springer, 2014.
- D. C. Alexander, D. Zikic, A. Ghosh, R. Tanno, V. Wottschel, J. Zhang, E. Kaden, T. B. Dyrby, S. N. Sotiropoulos, H. Zhang, et al., “Image quality transfer and applications in diffusion mri,” NeuroImage, vol. 152, pp. 283–298, 2017.
- S. B. Blumberg, R. Tanno, I. Kokkinos, and D. C. Alexander, “Deeper image quality transfer: Training low-memory neural networks for 3d images,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I, pp. 118–125, Springer, 2018.
- D. C. Alexander, A. Ghosh, S. A. Hurley, and S. N. Sotiropoulos, “Image quality transfer benefits tractography of low-resolution data,” Intl Society for Magnetic Resonance in Medicine (ISMRM), 2016.
- Y. Hong, G. Chen, P.-T. Yap, and D. Shen, “Multifold acceleration of diffusion mri via deep learning reconstruction from slice-undersampled data,” in International Conference on Information Processing in Medical Imaging, pp. 530–541, Springer, 2019.
- J.-P. Fortin, D. Parker, B. Tunç, T. Watanabe, M. A. Elliott, K. Ruparel, D. R. Roalf, T. D. Satterthwaite, R. C. Gur, R. E. Gur, et al., “Harmonization of multi-site diffusion tensor imaging data,” Neuroimage, vol. 161, pp. 149–170, 2017.
- H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, G. Grant, C. E. Marx, R. A. Morey, L. A. Flashman, et al., “Inter-site and inter-scanner diffusion mri data harmonization,” NeuroImage, vol. 135, pp. 311–323, 2016.
- S. Cetin-Karayumak, K. Stegmayer, S. Walther, P. R. Szeszko, T. Crow, A. James, M. Keshavan, M. Kubicki, and Y. Rathi, “Exploring the limits of combat method for multi-site diffusion mri harmonization,” bioRxiv, pp. 2020–11, 2020.
- L. Ning, E. Bonet-Carne, F. Grussu, F. Sepehrband, E. Kaden, J. Veraart, S. B. Blumberg, C. S. Khoo, M. Palombo, I. Kokkinos, et al., “Cross-scanner and cross-protocol multi-shell diffusion mri data harmonization: Algorithms and results,” Neuroimage, vol. 221, p. 117128, 2020.
- S. C. Karayumak, S. Bouix, L. Ning, A. James, T. Crow, M. Shenton, M. Kubicki, and Y. Rathi, “Retrospective harmonization of multi-site diffusion mri data acquired with different acquisition parameters,” Neuroimage, vol. 184, pp. 180–200, 2019.
- C. M. Tax, F. Grussu, E. Kaden, L. Ning, U. Rudrapatna, C. J. Evans, S. St-Jean, A. Leemans, S. Koppers, D. Merhof, et al., “Cross-scanner and cross-protocol diffusion mri data harmonisation: A benchmark database and evaluation of algorithms,” NeuroImage, vol. 195, pp. 285–299, 2019.
- C. B. Hansen, K. G. Schilling, F. Rheault, S. Resnick, A. T. Shafer, L. L. Beason-Held, and B. A. Landman, “Contrastive semi-supervised harmonization of single-shell to multi-shell diffusion mri,” Magnetic Resonance Imaging, vol. 93, pp. 73–86, 2022.
- D. Moyer, G. Ver Steeg, C. M. Tax, and P. M. Thompson, “Scanner invariant representations for diffusion mri harmonization,” Magnetic resonance in medicine, vol. 84, no. 4, pp. 2174–2189, 2020.
- V. Nath, P. Parvathaneni, C. B. Hansen, A. E. Hainline, C. Bermudez, S. Remedios, J. A. Blaber, K. G. Schilling, I. Lyu, V. Janve, et al., “Inter-scanner harmonization of high angular resolution dw-mri using null space deep learning,” in Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018 22, pp. 193–201, Springer, 2019.
- N. R. Newlin, L. Y. Cai, T. Yao, D. Archer, K. G. Schilling, T. J. Hohman, K. R. Pechman, A. Jefferson, A. T. Shafer, S. M. Resnick, et al., “Comparing voxel-and feature-wise harmonization of complex graph measures from multiple sites for structural brain network investigation of aging,” in Medical Imaging 2023: Image Processing, vol. 12464, pp. 524–530, SPIE, 2023.
- S. B. Blumberg, M. Palombo, C. S. Khoo, C. M. Tax, R. Tanno, and D. C. Alexander, “Multi-stage prediction networks for data harmonization,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV 22, pp. 411–419, Springer, 2019.
- V. Nath, S. Remedios, P. Parvathaneni, C. B. Hansen, R. G. Bayrak, C. Bermudez, J. A. Blaber, K. G. Schilling, V. A. Janve, Y. Gao, et al., “Harmonizing 1.5 t/3t diffusion weighted mri through development of deep learning stabilized microarchitecture estimators,” in Medical Imaging 2019: Image Processing, vol. 10949, pp. 173–182, SPIE, 2019.
- H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, S. Karmacharya, G. Grant, C. E. Marx, R. A. Morey, et al., “Multi-site harmonization of diffusion mri data in a registration framework,” Brain imaging and behavior, vol. 12, pp. 284–295, 2018.
- S. Koppers, L. Bloy, J. I. Berman, C. M. Tax, J. C. Edgar, and D. Merhof, “Spherical harmonic residual network for diffusion signal harmonization,” in Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018 22, pp. 173–182, Springer, 2019.
- Q. Tong, T. Gong, H. He, Z. Wang, W. Yu, J. Zhang, L. Zhai, H. Cui, X. Meng, C. W. Tax, et al., “A deep learning–based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols,” Magnetic Resonance Imaging, vol. 73, pp. 31–44, 2020.
- T. Yao, F. Rheault, L. Y. Cai, V. Nath, Z. Asad, N. Newlin, C. Cui, R. Deng, K. Ramadass, K. Schilling, et al., “Deep constrained spherical deconvolution for robust harmonization,” in Medical Imaging 2023: Image Processing, vol. 12464, pp. 169–176, SPIE, 2023.
- S. St-Jean, M. A. Viergever, and A. Leemans, “Harmonization of diffusion mri data sets with adaptive dictionary learning,” Human brain mapping, vol. 41, no. 16, pp. 4478–4499, 2020.
- O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser, and S. O. Schoenberg, “Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics,” Magnetic resonance imaging, vol. 26, no. 6, pp. 754–762, 2008.
- E. J. Canales-Rodríguez, A. Daducci, S. N. Sotiropoulos, E. Caruyer, S. Aja-Fernández, J. Radua, J. M. Y. Mendizabal, Y. Iturria-Medina, L. Melie-García, Y. Alemán-Gómez, et al., “Spherical deconvolution of multichannel diffusion mri data with non-gaussian noise models and spatial regularization,” PloS one, vol. 10, no. 10, p. e0138910, 2015.
- D. K. Jones, “The effect of gradient sampling schemes on measures derived from diffusion tensor mri: a monte carlo study,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 51, no. 4, pp. 807–815, 2004.
- J. Veraart, E. Fieremans, and D. S. Novikov, “Diffusion mri noise mapping using random matrix theory,” Magnetic resonance in medicine, vol. 76, no. 5, pp. 1582–1593, 2016.
- J. V. Manjón, P. Coupé, L. Martí-Bonmatí, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of mr images with spatially varying noise levels,” Journal of Magnetic Resonance Imaging, vol. 31, no. 1, pp. 192–203, 2010.
- S. St-Jean, P. Coupé, and M. Descoteaux, “Non local spatial and angular matching: Enabling higher spatial resolution diffusion mri datasets through adaptive denoising,” Medical image analysis, vol. 32, pp. 115–130, 2016.
- G. Chen, B. Dong, Y. Zhang, D. Shen, and P.-T. Yap, “Neighborhood matching for curved domains with application to denoising in diffusion mri,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 629–637, Springer, 2017.
- J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila, “Noise2noise: Learning image restoration without clean data,” arXiv preprint arXiv:1803.04189, 2018.
- A. Krull, T.-O. Buchholz, and F. Jug, “Noise2void-learning denoising from single noisy images,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2129–2137, 2019.
- J. Batson and L. Royer, “Noise2self: Blind denoising by self-supervision,” in International Conference on Machine Learning, pp. 524–533, PMLR, 2019.
- S. Fadnavis, J. Batson, and E. Garyfallidis, “Patch2self: Denoising diffusion mri with self-supervised learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 16293–16303, 2020.
- Q. Tian, Z. Li, Q. Fan, J. R. Polimeni, B. Bilgic, D. H. Salat, and S. Y. Huang, “Sdndti: Self-supervised deep learning-based denoising for diffusion tensor mri,” Neuroimage, vol. 253, p. 119033, 2022.
- K. G. Schilling, S. Fadnavis, M. Visagie, E. Garyfallidis, B. A. Landman, S. A. Smith, and K. P. O’Grady, “Patch2self denoising of diffusion mri in the cervical spinal cord improves repeatability and feature conspicuity,” in International Society for Magnetic Resonance in Medicine Annual Meeting, 2021.
- J. L. Andersson, “Diffusion mri artifact correction,” in Advances in Magnetic Resonance Technology and Applications, vol. 4, pp. 123–146, Elsevier, 2021.
- J. L. Andersson, S. Skare, and J. Ashburner, “How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging,” Neuroimage, vol. 20, no. 2, pp. 870–888, 2003.
- S. T. Duong, S. L. Phung, A. Bouzerdoum, and M. M. Schira, “An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding epi images,” Magnetic Resonance Imaging, vol. 71, pp. 1–10, 2020.
- B. Zahneisen, K. Baeumler, G. Zaharchuk, D. Fleischmann, and M. Zeineh, “Deep flow-net for epi distortion estimation,” Neuroimage, vol. 217, p. 116886, 2020.
- A. Z. Alkilani, T. Çukur, and E. U. Saritas, “Fd-net: An unsupervised deep forward-distortion model for susceptibility artifact correction in epi,” arXiv preprint arXiv:2303.10436, 2023.
- A. Legouhy, M. Graham, M. Guerreri, W. Stee, T. Villemonteix, P. Peigneux, and H. Zhang, “Correction of susceptibility distortion in epi: a semi-supervised approach with deep learning,” in International Workshop on Computational Diffusion MRI, pp. 38–49, Springer, 2022.
- K. G. Schilling, J. Blaber, C. Hansen, L. Cai, B. Rogers, A. W. Anderson, S. Smith, P. Kanakaraj, T. Rex, S. M. Resnick, et al., “Distortion correction of diffusion weighted mri without reverse phase-encoding scans or field-maps,” PLoS One, vol. 15, no. 7, p. e0236418, 2020.
- Y. Qiao, W. Sun, and Y. Shi, “Fod-based registration for susceptibility distortion correction in brainstem connectome imaging,” NeuroImage, vol. 202, p. 116164, 2019.
- Y. Qiao and Y. Shi, “Unsupervised deep learning for fod-based susceptibility distortion correction in diffusion mri,” IEEE transactions on medical imaging, vol. 41, no. 5, pp. 1165–1175, 2021.
- K. G. Schilling, J. Blaber, Y. Huo, A. Newton, C. Hansen, V. Nath, A. T. Shafer, O. Williams, S. M. Resnick, B. Rogers, et al., “Synthesized b0 for diffusion distortion correction (synb0-disco),” Magnetic resonance imaging, vol. 64, pp. 62–70, 2019.
- R. Ayub, Q. Zhao, M. Meloy, E. V. Sullivan, A. Pfefferbaum, E. Adeli, and K. M. Pohl, “Inpainting cropped diffusion mri using deep generative models,” in Predictive Intelligence in Medicine: Third International Workshop, PRIME 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings 3, pp. 91–100, Springer, 2020.
- Q. Zhang, G. Ruan, W. Yang, Y. Liu, K. Zhao, Q. Feng, W. Chen, E. X. Wu, and Y. Feng, “Mri gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks,” Magnetic resonance in medicine, vol. 82, no. 6, pp. 2133–2145, 2019.
- M. J. Muckley, B. Ades-Aron, A. Papaioannou, G. Lemberskiy, E. Solomon, Y. W. Lui, D. K. Sodickson, E. Fieremans, D. S. Novikov, and F. Knoll, “Training a neural network for gibbs and noise removal in diffusion mri,” Magnetic resonance in medicine, vol. 85, no. 1, pp. 413–428, 2021.
- A. Ahmad, D. Parker, S. Dheer, Z. R. Samani, and R. Verma, “3d-qcnet–a pipeline for automated artifact detection in diffusion mri images,” Computerized Medical Imaging and Graphics, vol. 103, p. 102151, 2023.
- M. S. Graham, I. Drobnjak, and H. Zhang, “A supervised learning approach for diffusion mri quality control with minimal training data,” NeuroImage, vol. 178, pp. 668–676, 2018.
- C. Kelly, M. Pietsch, S. Counsell, and J.-D. Tournier, “Transfer learning and convolutional neural net fusion for motion artefact detection,” in Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii, vol. 3523, 2017.
- Z. R. Samani, J. A. Alappatt, D. Parker, A. A. O. Ismail, and R. Verma, “Qc-automator: Deep learning-based automated quality control for diffusion mr images,” Frontiers in neuroscience, vol. 13, p. 1456, 2020.
- F. Szczepankiewicz, D. van Westen, E. Englund, C.-F. Westin, F. Ståhlberg, J. Lätt, P. C. Sundgren, and M. Nilsson, “The link between diffusion mri and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (divide),” Neuroimage, vol. 142, pp. 522–532, 2016.
- O. Reynaud, “Time-dependent diffusion mri in cancer: tissue modeling and applications,” Frontiers in Physics, vol. 5, p. 58, 2017.
- J. Tallus, M. Mohammadian, T. Kurki, T. Roine, J. P. Posti, and O. Tenovuo, “A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation in traumatic brain injury,” NeuroImage: Clinical, vol. 37, p. 103284, 2023.
- A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, et al., “Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,” Information Fusion, vol. 58, pp. 82–115, 2020.
- R. Lin, A. Gholipour, J.-P. Thiran, D. Karimi, H. Kebiri, and M. B. Cuadra, “Cross-age and cross-site domain shift impacts on deep learning-based white matter fiber estimation in newborn and baby brains,” arXiv preprint arXiv:2312.14773, 2023.
- L. Y. Cai, Q. Yang, C. B. Hansen, V. Nath, K. Ramadass, G. W. Johnson, B. N. Conrad, B. D. Boyd, J. P. Begnoche, L. L. Beason-Held, et al., “Prequal: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted mri images,” Magnetic resonance in medicine, vol. 86, no. 1, pp. 456–470, 2021.
- M. Cieslak, P. A. Cook, X. He, F.-C. Yeh, T. Dhollander, A. Adebimpe, G. K. Aguirre, D. S. Bassett, R. F. Betzel, J. Bourque, et al., “Qsiprep: an integrative platform for preprocessing and reconstructing diffusion mri data,” Nature methods, vol. 18, no. 7, pp. 775–778, 2021.
- G. Rensonnet, L. Adam, and B. Macq, “Solving inverse problems with deep neural networks driven by sparse signal decomposition in a physics-based dictionary,” arXiv preprint arXiv:2107.10657, 2021.
- L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T. G. Dietterich, and K.-R. Müller, “A unifying review of deep and shallow anomaly detection,” Proceedings of the IEEE, vol. 109, no. 5, pp. 756–795, 2021.
- W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution detection,” Advances in neural information processing systems, vol. 33, pp. 21464–21475, 2020.
- M. Descoteaux, R. Deriche, D. Le Bihan, J.-F. Mangin, and C. Poupon, “Multiple q-shell diffusion propagator imaging,” Medical image analysis, vol. 15, no. 4, pp. 603–621, 2011.
- J. Cheng, T. Jiang, and R. Deriche, “Theoretical analysis and practical insights on eap estimation via a unified hardi framework,” in MICCAI Workshop on Computational Diffusion MRI (CDMRI), 2011.
- M. Zucchelli, S. Deslauriers-Gauthier, and R. Deriche, “Investigating the effect of dmri signal representation on fully-connected neural networks brain tissue microstructure estimation,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 725–728, IEEE, 2021.
- M. Zucchelli, S. Deslauriers-Gauthier, and R. Deriche, “A computational framework for generating rotation invariant features and its application in diffusion mri,” Medical image analysis, vol. 60, p. 101597, 2020.
- E. Schwab, R. Vidal, and N. Charon, “Spatial-angular sparse coding for hardi,” in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part III 19, pp. 475–483, Springer, 2016.
- H. Chen, Z. Zhang, M. Jin, and F. Wang, “Prediction of dmri signals with neural architecture search,” Journal of Neuroscience Methods, vol. 365, p. 109389, 2022.
- B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” arXiv preprint arXiv:1611.01578, 2016.
- C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis, “Learning so (3) equivariant representations with spherical cnns,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–68, 2018.
- P. Müller, V. Golkov, V. Tomassini, and D. Cremers, “Rotation-equivariant deep learning for diffusion mri,” arXiv preprint arXiv:2102.06942, 2021.
- Y.-C. Su and K. Grauman, “Learning spherical convolution for fast features from 360 imagery,” Advances in Neural Information Processing Systems, vol. 30, 2017.
- W. Boomsma and J. Frellsen, “Spherical convolutions and their application in molecular modelling,” Advances in neural information processing systems, vol. 30, 2017.
- B. Coors, A. P. Condurache, and A. Geiger, “Spherenet: Learning spherical representations for detection and classification in omnidirectional images,” in Proceedings of the European conference on computer vision (ECCV), pp. 518–533, 2018.
- C. Ronchi, R. Iacono, and P. S. Paolucci, “The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry,” Journal of computational physics, vol. 124, no. 1, pp. 93–114, 1996.
- N. Gillet, A. Mesinger, B. Greig, A. Liu, and G. Ucci, “Deep learning from 21-cm tomography of the cosmic dawn and reionization,” Monthly Notices of the Royal Astronomical Society, vol. 484, no. 1, pp. 282–293, 2019.
- J. Fluri, T. Kacprzak, A. Refregier, A. Amara, A. Lucchi, and T. Hofmann, “Cosmological constraints from noisy convergence maps through deep learning,” Physical Review D, vol. 98, no. 12, p. 123518, 2018.
- T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical cnns,” arXiv preprint arXiv:1801.10130, 2018.
- M. Banerjee, R. Chakraborty, J. Bouza, and B. C. Vemuri, “Volterranet: A higher order convolutional network with group equivariance for homogeneous manifolds,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2, pp. 823–833, 2020.
- J. J. Bouza, C.-H. Yang, D. Vaillancourt, and B. C. Vemuri, “A higher order manifold-valued convolutional neural network with applications to diffusion mri processing,” in Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27, pp. 304–317, Springer, 2021.
- T. Cohen and M. Welling, “Group equivariant convolutional networks,” in International conference on machine learning, pp. 2990–2999, PMLR, 2016.
- T. Goodwin-Allcock, J. McEwen, R. Gray, P. Nachev, and H. Zhang, “How can spherical cnns benefit ml-based diffusion mri parameter estimation?,” in International Workshop on Computational Diffusion MRI, pp. 101–112, Springer, 2022.
- L. Kerkelä, K. Seunarine, F. Szczepankiewicz, and C. A. Clark, “Microstructural neuroimaging using spherical convolutional neural networks,” arXiv preprint arXiv:2211.09887, 2022.
- R. Liu, F. Lauze, E. Bekkers, K. Erleben, and S. Darkner, “Group convolutional neural networks for dwi segmentation,” in Geometric Deep Learning in Medical Image Analysis, pp. 96–106, PMLR, 2022.
- S. Sedlar, A. Alimi, T. Papadopoulo, R. Deriche, and S. Deslauriers-Gauthier, “A spherical convolutional neural network for white matter structure imaging via dmri,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24, pp. 529–539, Springer, 2021.
- R. Liu, F. Lauze, K. Erleben, R. W. Berg, and S. Darkner, “Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation,” Journal of Medical Imaging, vol. 9, no. 6, pp. 064002–064002, 2022.
- K. M. Huynh, T. Xu, Y. Wu, G. Chen, K.-H. Thung, H. Wu, W. Lin, D. Shen, P.-T. Yap, and U. B. C. P. Consortium, “Probing brain micro-architecture by orientation distribution invariant identification of diffusion compartments,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22, pp. 547–555, Springer, 2019.
- E. Fieremans and H.-H. Lee, “Physical and numerical phantoms for the validation of brain microstructural mri: A cookbook,” Neuroimage, vol. 182, pp. 39–61, 2018.
- W. Lee, B. Kim, and H. Park, “Quantification of intravoxel incoherent motion with optimized b-values using deep neural network,” Magnetic Resonance in Medicine, vol. 86, no. 1, pp. 230–244, 2021.
- C. Ye, Y. Cui, and X. Li, “Q-space learning with synthesized training data,” in Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018 22, pp. 123–132, Springer, 2019.
- E. Ozarslan, C. Koay, T. M. Shepherd, S. J. Blackband, and P. J. Basser, “Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space mri,” in Proc. Intl. Soc. Mag. Reson. Med, vol. 17, p. 1396, Citeseer, 2009.
- Y. Qin, Y. Li, Z. Liu, and C. Ye, “Knowledge transfer between datasets for learning-based tissue microstructure estimation,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1530–1533, IEEE, 2020.
- M. S. Graham, I. Drobnjak, and H. Zhang, “Realistic simulation of artefacts in diffusion mri for validating post-processing correction techniques,” NeuroImage, vol. 125, pp. 1079–1094, 2016.
- D. Karimi, S. K. Warfield, and A. Gholipour, “Calibrated diffusion tensor estimation,” arXiv preprint arXiv:2111.10847, 2021.
- M. Chamberland, M. Bernier, G. Girard, D. Fortin, M. Descoteaux, and K. Whittingstall, “Penthera 1.5 t,” URL: https://doi. org/10.5281/zenodo, vol. 2602022, 2019.
- L. Y. Cai, Q. Yang, P. Kanakaraj, V. Nath, A. T. Newton, H. A. Edmonson, J. Luci, B. N. Conrad, G. R. Price, C. B. Hansen, C. I. Kerley, K. Ramadass, F.-C. Yeh, H. Kang, E. Garyfallidis, M. Descoteaux, F. Rheault, K. G. Schilling, and B. A. Landman, “”masivar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted magnetic resonance imaging”,” OpenNeuro, 2021.
- L. Y. Cai, Q. Yang, P. Kanakaraj, V. Nath, A. T. Newton, H. A. Edmonson, J. Luci, B. N. Conrad, G. R. Price, C. B. Hansen, et al., “Masivar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted mri,” Magnetic resonance in medicine, vol. 86, no. 6, pp. 3304–3320, 2021.
- H. Bagher-Ebadian, K. Jafari-Khouzani, P. D. Mitsias, M. Lu, H. Soltanian-Zadeh, M. Chopp, and J. R. Ewing, “Predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric mri in patients with stroke,” PloS one, vol. 6, no. 8, p. e22626, 2011.
- F. Arnez, H. Espinoza, A. Radermacher, and F. Terrier, “A comparison of uncertainty estimation approaches in deep learning components for autonomous vehicle applications,” arXiv preprint arXiv:2006.15172, 2020.
- C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” arXiv preprint arXiv:1706.04599, 2017.
- B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” in Advances in Neural Information Processing Systems, pp. 6402–6413, 2017.
- I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
- A. Kurakin, I. Goodfellow, S. Bengio, et al., “Adversarial examples in the physical world,” 2016.
- G. Mårtensson, D. Ferreira, T. Granberg, L. Cavallin, K. Oppedal, A. Padovani, I. Rektorova, L. Bonanni, M. Pardini, M. G. Kramberger, et al., “The reliability of a deep learning model in clinical out-of-distribution mri data: a multicohort study,” Medical Image Analysis, vol. 66, p. 101714, 2020.
- S. Bulusu, B. Kailkhura, B. Li, P. K. Varshney, and D. Song, “Anomalous example detection in deep learning: A survey,” IEEE Access, vol. 8, pp. 132330–132347, 2020.
- A. Loquercio, M. Segu, and D. Scaramuzza, “A general framework for uncertainty estimation in deep learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3153–3160, 2020.
- V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for deep learning using calibrated regression,” in International Conference on Machine Learning, pp. 2796–2804, PMLR, 2018.
- D. Levi, L. Gispan, N. Giladi, and E. Fetaya, “Evaluating and calibrating uncertainty prediction in regression tasks,” arXiv preprint arXiv:1905.11659, 2019.
- M. Y. Avci, Z. Li, Q. Fan, S. Huang, B. Bilgic, and Q. Tian, “Quantifying the uncertainty of neural networks using monte carlo dropout for deep learning based quantitative mri,” arXiv preprint arXiv:2112.01587, 2021.
- R. Tanno, D. Worrall, E. Kaden, A. Ghosh, F. Grussu, A. Bizzi, S. N. Sotiropoulos, A. Criminisi, and D. C. Alexander, “Uncertainty quantification in deep learning for safer neuroimage enhancement,” arXiv preprint arXiv:1907.13418, 2019.
- R. Tanno, A. Ghosh, F. Grussu, E. Kaden, A. Criminisi, and D. C. Alexander, “Bayesian image quality transfer,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 265–273, Springer, 2016.
- B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” Advances in neural information processing systems, vol. 30, 2017.
- K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption generation with visual attention,” in International conference on machine learning, pp. 2048–2057, PMLR, 2015.
- D. Varadarajan and J. P. Haldar, “Towards optimal linear estimation of orientation distribution functions with arbitrarily sampled diffusion mri data,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 743–746, IEEE, 2018.
- Davood Karimi (35 papers)
- Simon K. Warfield (27 papers)