2000 character limit reached
Markovian embedding of nonlocal equations using spectral representation (2402.00009v1)
Published 24 Dec 2023 in math.NA, cs.NA, physics.comp-ph, and physics.flu-dyn
Abstract: Nonlocal evolutionary equations containing memory terms model a variety of non-Markovian processes. We present a Markovian embedding procedure for a class of nonlocal equations by utilising the spectral representation of the nonlinear memory kernel. This allows us to transform the nonlocal system to a local-in-time system in an abstract extended space. We demonstrate our embedding procedure and its efficacy for two different physical models, namely the (i) 1D walking droplet and (ii) the 1D single-phase Stefan problem.
- P. M. Lovalenti, J. F. Brady, The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small reynolds number, J. Fluid Mech. 256 (1993) 561–605.
- A trajectory equation for walking droplets: hydrodynamic pilot-wave theory, J. Fluid Mech. 737 (2013) 552–570.
- G. G. Peng, O. Schnitzer, Weakly nonlinear dynamics of a chemically active particle near the threshold for spontaneous motion ii. history-dependent motion, Phys. Rev.Fluids 8 (2023) 033602.
- J. Stefan, Ueber die theorie der eisbildung, insbesondere über die eisbildung im polarmeere, Annalen der Physik 278 (1891) 269–286.
- A. S. Fokas, B. Pelloni, Generalized Dirichlet-to-Neumann map in time-dependent domains, Stud. Appl. Math. 129 (2012) 51–90.
- W. R. Mann, F. Wolf, Heat transfer between solids and gasses under nonlinear boundary conditions, Q. Appl. Math. 9 (1951) 163–184.
- J. B. Keller, W. E. Olmstead, Temperature of a nonlinearly radiating semi-infinite solid, Q. Appl. Math. 29 (1972) 559–566.
- W. E. Olmstead, R. A. Handelsman, Asymptotic solution to a class of nonlinear volterra integral equations. II, SIAM J. Appl. Math. 30 (1976) 180–189.
- C. Dafermos, Asymptotic stability in viscoelasticity, Archive for Rational Mechanics and Analysis 37 (1970) 297–308.
- Explicit Runge-Kutta algorithm to solve non-local equations with memory effects: case of the Maxey-Riley-Gatignol equation (2023). arXiv:2308.09714.
- Dynamical phenomena: Walking and orbiting droplets, Nature 437 (2005) 208–208.
- Superwalking droplets, Phys. Rev. Lett 123 (2019) 024503.
- J. W. M. Bush, A. U. Oza, Hydrodynamic quantum analogs, Reports on Progress in Physics 84 (2020) 017001.
- Multistable free states of an active particle from a coherent memory dynamics, Phys. Rev. Lett 122 (2019) 104303.
- M. Faraday, On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philosophical Transactions of the Royal Society London Series I 121 (1831) 299–340.
- Speed oscillations in classical pilot-wave dynamics, Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences 476 (2020) 20190884.
- Unsteady dynamics of a classical particle-wave entity, Phys. Rev. E 104 (2021) 015106.
- M. Durey, Bifurcations and chaos in a Lorenz-like pilot-wave system, Chaos 30 (2020) 103115.
- R. N. Valani, Lorenz-like systems emerging from an integro-differential trajectory equation of a one-dimensional wave–particle entity, Chaos 32 (2022).
- S. Cox, P. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 2 (2002) 430–455.
- S. Mitchell, M. Vynnycky, Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. Math. Comput. 215 (2009) 1609–1621.