Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reimagining Reality: A Comprehensive Survey of Video Inpainting Techniques (2401.17883v1)

Published 31 Jan 2024 in cs.CV

Abstract: This paper offers a comprehensive analysis of recent advancements in video inpainting techniques, a critical subset of computer vision and artificial intelligence. As a process that restores or fills in missing or corrupted portions of video sequences with plausible content, video inpainting has evolved significantly with the advent of deep learning methodologies. Despite the plethora of existing methods and their swift development, the landscape remains complex, posing challenges to both novices and established researchers. Our study deconstructs major techniques, their underpinning theories, and their effective applications. Moreover, we conduct an exhaustive comparative study, centering on two often-overlooked dimensions: visual quality and computational efficiency. We adopt a human-centric approach to assess visual quality, enlisting a panel of annotators to evaluate the output of different video inpainting techniques. This provides a nuanced qualitative understanding that complements traditional quantitative metrics. Concurrently, we delve into the computational aspects, comparing inference times and memory demands across a standardized hardware setup. This analysis underscores the balance between quality and efficiency: a critical consideration for practical applications where resources may be constrained. By integrating human validation and computational resource comparison, this survey not only clarifies the present landscape of video inpainting techniques but also charts a course for future explorations in this vibrant and evolving field.

Summary

We haven't generated a summary for this paper yet.