Parameter-robust full linear convergence and optimal complexity of adaptive iteratively linearized FEM for nonlinear PDEs (2401.17778v1)
Abstract: We propose an adaptive iteratively linearized finite element method (AILFEM) in the context of strongly monotone nonlinear operators in Hilbert spaces. The approach combines adaptive mesh-refinement with an energy-contractive linearization scheme (e.g., the Ka\v{c}anov method) and a norm-contractive algebraic solver (e.g., an optimal geometric multigrid method). Crucially, a novel parameter-free algebraic stopping criterion is designed and we prove that it leads to a uniformly bounded number of algebraic solver steps. Unlike available results requiring sufficiently small adaptivity parameters to ensure even plain convergence, the new AILFEM algorithm guarantees full R-linear convergence for arbitrary adaptivity parameters. Thus, parameter-robust convergence is guaranteed. Moreover, for sufficiently small adaptivity parameters, the new adaptive algorithm guarantees optimal complexity, i.e., optimal convergence rates with respect to the overall computational cost and, hence, time.
- “Energy norm based error estimators for adaptive BEM for hypersingular integral equations” In Appl. Numer. Math. 95, 2015, pp. 15–35
- Peter Binev, Wolfgang Dahmen and Ron DeVore “Adaptive finite element methods with convergence rates” In Numer. Math. 97.2, 2004, pp. 219–268
- “On full linear convergence and optimal complexity of adaptive FEM with inexact solver”, 2023 arXiv:2311.15738
- “Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs” In IMA J. Numer. Anal. in print, 2023 DOI: 10.1093/imanum/drad039
- Alex Bespalov, Alexander Haberl and Dirk Praetorius “Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems” In Comput. Methods Appl. Mech. Engrg. 317, 2017, pp. 318–340
- A. Cohen, W. Dahmen and R. DeVore “Adaptive wavelet methods for elliptic operator equations: convergence rates” In Math. Comp. 70.233, 2001, pp. 27–75
- A. Cohen, W. Dahmen and R. DeVore “Adaptive wavelet schemes for nonlinear variational problems” In SIAM J. Numer. Anal. 41.5, 2003, pp. 1785–1823
- “Axioms of adaptivity” In Comput. Math. Appl. 67.6, 2014, pp. 1195–1253 DOI: 10.1016/j.camwa.2013.12.003
- “An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity” In SIAM J. Numer. Anal. 50.3, 2012, pp. 1029–1057
- “Quasi-optimal convergence rate for an adaptive finite element method” In SIAM J. Numer. Anal. 46.5, 2008, pp. 2524–2550
- Long Chen, Ricardo H. Nochetto and Jinchao Xu “Optimal multilevel methods for graded bisection grids” In Numer. Math. 120.1, 2012, pp. 1–34 DOI: 10.1007/s00211-011-0401-4
- Scott Congreve and Thomas P. Wihler “Iterative Galerkin discretizations for strongly monotone problems” In J. Comput. Appl. Math. 311, 2017, pp. 457–472 DOI: 10.1016/j.cam.2016.08.014
- Peter Deuflhard “Newton methods for nonlinear problems” Affine invariance and adaptive algorithms 35, Springer Series in Computational Mathematics Springer-Verlag, Berlin, 2004, pp. xii+424
- Lars Diening, Lukas Gehring and Johannes Storn “Adaptive Mesh Refinement for arbitrary initial Triangulations”, 2023 arXiv:2306.02674
- Willy Dörfler “A convergent adaptive algorithm for Poisson’s equation” In SIAM J. Numer. Anal. 33.3, 1996, pp. 1106–1124 DOI: 10.1137/0733054
- “Rate optimal adaptive FEM with inexact solver for nonlinear operators” In IMA J. Numer. Anal. 38.4, 2018, pp. 1797–1831 DOI: 10.1093/imanum/drx050
- “Rate optimality of adaptive finite element methods with respect to overall computational costs” In Math. Comp. 90.331, 2021, pp. 2011–2040 DOI: 10.1090/mcom/3654
- Eduardo M. Garau, Pedro Morin and Carlos Zuppa “Convergence of an adaptive Kačanov FEM for quasi-linear problems” In Appl. Numer. Math. 61.4, 2011, pp. 512–529 URL: https://doi.org/10.1016/j.apnum.2010.12.001
- E.M. Garau, P. Morin and C. Zuppa “Quasi-Optimal Convergence Rate of an AFEM for Quasi-Linear Problems of Monotone Type” In Numer. Math: Theory, Meth. Appl. 5.2, 2012, pp. 131–156
- “Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver” In Numer. Math. 147.3, 2021, pp. 679–725 DOI: 10.1007/s00211-021-01176-w
- Pascal Heid, Dirk Praetorius and Thomas P. Wihler “Energy contraction and optimal convergence of adaptive iterative linearized finite element methods” In Comput. Methods Appl. Math. 21.2, 2021, pp. 407–422 DOI: 10.1515/cmam-2021-0025
- Pascal Heid and Thomas P. Wihler “Adaptive iterative linearization Galerkin methods for nonlinear problems” In Math. Comp. 89, 2020, pp. 2707–2734 DOI: 10.1090/mcom/3545
- Pascal Heid and Thomas P. Wihler “On the convergence of adaptive iterative linearized Galerkin methods” In Calcolo 57, 2020, pp. 24 DOI: 10.1007/s10092-020-00368-4
- “hpℎ𝑝hpitalic_h italic_p-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs” in print In ESAIM Math. Model. Numer. Anal., in print, 2023 DOI: 10.1051/m2an/2023104
- L.M. Kačanov “Variational methods of solution of plasticity problems” In J. Appl. Math. Mech. 23, 1959, pp. 880–883 DOI: 10.1016/0021-8928(59)90184-4
- Michael Karkulik, David Pavlicek and Dirk Praetorius “On 2D newest vertex bisection: optimality of mesh-closure and H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-stability of L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-projection” In Constr. Approx. 38.2, 2013, pp. 213–234 DOI: 10.1007/s00365-013-9192-4
- “Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization”, 2023 HAL: hal-04156711
- Rob Stevenson “Optimality of a standard adaptive finite element method” In Found. Comput. Math. 7.2, 2007, pp. 245–269
- Rob Stevenson “The completion of locally refined simplicial partitions created by bisection” In Math. Comp. 77.261, 2008, pp. 227–241 DOI: 10.1090/S0025-5718-07-01959-X
- “Uniform Convergence of Multigrid Methods for Adaptive Meshes” In Appl. Numer. Math. 113 NLD: Elsevier Science Publishers B. V., 2017, pp. 109–123 DOI: 10.1016/j.apnum.2016.11.005
- E.H. Zarantonello “Solving functional equations by contractive averaging” In Technical Report 160, Mathematics Research Center, Madison, 1960 DOI: 10.1090/S0002-9904-1964-11237-4
- Eberhard Zeidler “Nonlinear functional analysis and its applications. II/B” New York: Springer-Verlag, 1990, pp. i–xvi and 469–1202 DOI: 10.1007/978-1-4612-0985-0