Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double InfoGAN for Contrastive Analysis (2401.17776v1)

Published 31 Jan 2024 in cs.CV, cs.AI, and stat.ML

Abstract: Contrastive Analysis (CA) deals with the discovery of what is common and what is distinctive of a target domain compared to a background one. This is of great interest in many applications, such as medical imaging. Current state-of-the-art (SOTA) methods are latent variable models based on VAE (CA-VAEs). However, they all either ignore important constraints or they don't enforce fundamental assumptions. This may lead to sub-optimal solutions where distinctive factors are mistaken for common ones (or viceversa). Furthermore, the generated images have a rather poor quality, typical of VAEs, decreasing their interpretability and usefulness. Here, we propose Double InfoGAN, the first GAN based method for CA that leverages the high-quality synthesis of GAN and the separation power of InfoGAN. Experimental results on four visual datasets, from simple synthetic examples to complex medical images, show that the proposed method outperforms SOTA CA-VAEs in terms of latent separation and image quality. Datasets and code are available online.

Citations (3)

Summary

We haven't generated a summary for this paper yet.