Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold (2401.17675v1)

Published 31 Jan 2024 in stat.ML, cs.DS, and cs.LG

Abstract: We present a theoretical foundation regarding the boundedness of the t-SNE algorithm. t-SNE employs gradient descent iteration with Kullback-Leibler (KL) divergence as the objective function, aiming to identify a set of points that closely resemble the original data points in a high-dimensional space, minimizing KL divergence. Investigating t-SNE properties such as perplexity and affinity under a weak convergence assumption on the sampled dataset, we examine the behavior of points generated by t-SNE under continuous gradient flow. Demonstrating that points generated by t-SNE remain bounded, we leverage this insight to establish the existence of a minimizer for KL divergence.

Citations (2)

Summary

We haven't generated a summary for this paper yet.