Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marginal treatment effects in the absence of instrumental variables (2401.17595v2)

Published 31 Jan 2024 in econ.EM

Abstract: We propose a method for defining, identifying, and estimating the marginal treatment effect (MTE) without imposing the instrumental variable (IV) assumptions of independence, exclusion, and separability (or monotonicity). Under a new definition of the MTE based on reduced-form treatment error that is statistically independent of the covariates, we find that the relationship between the MTE and standard treatment parameters holds in the absence of IVs. We provide a set of sufficient conditions ensuring the identification of the defined MTE in an environment of essential heterogeneity. The key conditions include a linear restriction on potential outcome regression functions, a nonlinear restriction on the propensity score, and a conditional mean independence restriction that will lead to additive separability. We prove this identification using the notion of semiparametric identification based on functional form. And we provide an empirical application for the Head Start program to illustrate the usefulness of the proposed method in analyzing heterogenous causal effects when IVs are elusive.

Summary

We haven't generated a summary for this paper yet.