Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdvGPS: Adversarial GPS for Multi-Agent Perception Attack (2401.17499v2)

Published 30 Jan 2024 in cs.CV

Abstract: The multi-agent perception system collects visual data from sensors located on various agents and leverages their relative poses determined by GPS signals to effectively fuse information, mitigating the limitations of single-agent sensing, such as occlusion. However, the precision of GPS signals can be influenced by a range of factors, including wireless transmission and obstructions like buildings. Given the pivotal role of GPS signals in perception fusion and the potential for various interference, it becomes imperative to investigate whether specific GPS signals can easily mislead the multi-agent perception system. To address this concern, we frame the task as an adversarial attack challenge and introduce \textsc{AdvGPS}, a method capable of generating adversarial GPS signals which are also stealthy for individual agents within the system, significantly reducing object detection accuracy. To enhance the success rates of these attacks in a black-box scenario, we introduce three types of statistically sensitive natural discrepancies: appearance-based discrepancy, distribution-based discrepancy, and task-aware discrepancy. Our extensive experiments on the OPV2V dataset demonstrate that these attacks substantially undermine the performance of state-of-the-art methods, showcasing remarkable transferability across different point cloud based 3D detection systems. This alarming revelation underscores the pressing need to address security implications within multi-agent perception systems, thereby underscoring a critical area of research.

Citations (3)

Summary

We haven't generated a summary for this paper yet.