Towards Quantum Simulation of Non-Markovian Open Quantum Dynamics: A Universal and Compact Theory (2401.17255v4)
Abstract: Non-Markovianity, the intricate dependence of an open quantum system on its temporal evolution history, holds tremendous implications across various scientific disciplines. However, accurately characterizing the complex non-Markovian effects has posed a formidable challenge for numerical simulations. While quantum computing technologies show promise, a universal theory enabling practical quantum algorithm implementation has been elusive. We address this gap by introducing the dissipaton-embedded quantum master equation in second quantization (DQME-SQ). This exact and compact theory offers two key advantages: representability by quantum circuits and universal applicability to any Gaussian environment. We demonstrate these capabilities through digital quantum simulations of non-Markovian dissipative dynamics in both bosonic and fermionic environments. The DQME-SQ framework opens a new horizon for the efficient exploration of complex open quantum systems by leveraging the rapidly advancing quantum computing technologies.
- U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore, 2021, 5th edition.
- H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, New York, 2002.
- H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, Singapore, 5th edition, 2009.
- A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems, Oxford University Press, New York, 2006.
- Rev. Mod. Phys. 88, 045005 (2016).
- Phys. Rev. Lett. 111, 086601 (2013).
- Rev. Mod. Phys. 88, 021002 (2016).
- I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
- Science 316, 1462 (2007).
- Nature 446, 782 (2007).
- Phys. Rev. E 91, 022706 (2015).
- J. Chem. Phys. 157, 015101 (2022).
- Y. Tanimura, Phys. Rev. A 41, 6676 (1990).
- Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
- Chem. Phys. Lett. 395, 216 (2004).
- Phys. Rev. E 75, 031107 (2007).
- J. S. Shao, J. Chem. Phys. 120, 5053 (2004).
- J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
- J. Chem. Phys. 139, 134106 (2013).
- Phys. Rev. Lett. 123, 050601 (2019).
- Phys. Rev. Lett. 120, 030402 (2018).
- Phys. Rev. Lett. 123, 090402 (2019).
- Nature Comm. 10, 3721 (2019).
- Phys. Rev. Lett. 113, 150403 (2014).
- Y. Zhao, J Chem. Phys. 158, 080901 (2023).
- J. Chem. Phys. 156, 194102 (2022).
- Phys. Rev. Lett. 129, 230601 (2022).
- Y. L. Ke and Y. Zhao, J. Chem. Phys. 145, 024101 (2016).
- Rev. Mod. Phys. 76, 1037 (2004).
- Nature 464, 45 (2010).
- Nature 549, 195 (2017).
- Chem. Rev. 119, 10856 (2019).
- Rev. Mod. Phys. 92, 015003 (2020).
- Phys. Rev. Lett. 125, 260511 (2020).
- Nat. Comput. Sci. 3, 25 (2023).
- Nature 607, 667 (2022).
- R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
- C. Gross and I. Bloch, Science 357, 995 (2017).
- PRX Quantum 3, 010320 (2022).
- arXiv:2311.15240 (2023).
- arXiv:2310.12539 (2023).
- J Chem. Phys. 160, 054101 (2024).
- Nature 470, 486 (2011).
- Phys. Rev. Res. 4, 043161 (2022).
- X. Li and C. Wang, Commun. Math. Phys. 401, 147 (2023).
- Phys. Rev. Res. 6, 013143 (2024).
- Phys. Rev. Lett. 127, 270503 (2021).
- Phys. Rev. Res. 4, 023216 (2022).
- Phys. Rev. Res. 3, 013182 (2021).
- Phys. Rev. Lett. 95, 250503 (2005).
- Phys. Rev. Lett. 125, 010501 (2020).
- PRX Quantum 2, 030307 (2021).
- J. Chem. Theory Comput. 19, 4851 (2023).
- J Chem. Phys. 158, 214110 (2023).
- Y. J. Yan, J. Chem. Phys. 140, 054105 (2014).
- J. Chem. Phys. 157, 044102 (2022).
- J. Chem. Phys. 156, 221102 (2022).
- See Supplemental Material for detailed analytic derivations regarding the DQME-SQ theory and its numerical implementation.
- L. Gui-Lu, Commun. Theor. Phys. 45, 825 (2006).
- Qiskit contributors, Qiskit: An open-source framework for quantum computing, 2023.
- Rev. Mod. Phys. 82, 1155 (2010).
- Nat. Phys. 10, 825 (2014).
- Phys. Rev. Lett. 115, 266802 (2015).
- Nat. Phys. 16, 1184 (2020).