Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A canonical realization of the alt $ν$-associahedron (2401.17204v1)

Published 30 Jan 2024 in math.CO

Abstract: Given a lattice path $\nu$, the alt $\nu$-Tamari lattice is a partial order recently introduced by Ceballos and Chenevi`ere, which generalizes the $\nu$-Tamari lattice and the $\nu$-Dyck lattice. All these posets are defined on the set of lattice paths that lie weakly above $\nu$, and posses a rich combinatorial structure. In this paper, we study the geometric structure of these posets. We show that their Hasse diagram is the edge graph of a polytopal complex induced by a tropical hyperplane arrangement, which we call the alt $\nu$-associahedron. This generalizes the realization of $\nu$-associahedra by Ceballos, Padrol and Sarmiento. Our approach leads to an elegant construction, in terms of areas below lattice paths, which we call the canonical realization. Surprisingly, in the case of the classical associahedron, our canonical realization magically recovers Loday's ubiquitous realization, via a simple affine transformation.

Summary

We haven't generated a summary for this paper yet.